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Abstract

Stochastic modelling has been successfully used in computer graphics to model a wide
array of natural phenomena� In modelling three�dimensional fuzzy or partially translucent
phenomena� however� many approaches are hampered by high memory and computation
requirements� and by a general lack of user control� The main contribution of this thesis
is the introduction of a general stochastic modelling primitive that operates on two or
more scales of visual detail� At the macroscopic level� the general shape of the model is
constrained by an ellipsoidal correlation function that controls the interpolation of user�
supplied data values� A technique called Kriging is used to perform this interpolation�
The microscopic level permits the addition of noise� which allows one to add interesting
visual textural detail and translucency� A wide variety of noise�synthesis techniques can
be employed in our model� The main advantages of the model over existing ones are low
storage requirements and the use of geometric primitives that are amenable to rendering in
traditional environments�

The basic theory of random �elds� which underlies our model� and previous related
models in computer graphics are thoroughly reviewed� As a case study we apply our model
to the simulation of clouds� The rendering algorithm developed takes full advantage of the
separation of scales inherent in our model� Two alternative rendering algorithms will be
described to render clouds� Possible extensions to more scales and applications to other
phenomena are also discussed�
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Chapter �

Introduction

The visual simulation of natural phenomena is an active research area in computer graphics�
Unlike other applied sciences we are not interested in highly accurate models� which are
essential for prediction and analysis� In computer graphics our goal is two�fold� �i� the
model should capture the visual characteristics of the phenomenon� and �ii� it should permit
control over the macroscopic features of the phenomenon� The �rst goal is part of the aim in
computer graphics to produce 	photo�realistic
 images� Realism is important in applications
such as �ight simulators� and other applications in which a user should have the illusion of
being in a natural environment� The second goal is essential in design and animation� In
design� a user should be able to synthesize a particular form of the phenomenon he or she
has in mind� In animation� control is important to achieve coherence between subsequent
frames�

Many models have already been proposed in computer graphics which attempt to meet
these criteria� In modelling three�dimensional fuzzy or partially�translucent phenomena�
however� many approaches are hampered by high memory and computation requirements�
Examples of such phenomena include clouds� �re� mist� smoke� dust and various types of
solid �three�dimensional� textures�

The model presented in this thesis satis�es the two goals and overcomes the high memory
requirements for the aforementioned class of phenomena� One of the main characteristics
of our model is that it operates on two or more scales of visual detail� In order to grasp the
complexities inherent in most natural phenomena� our model uses non�determinism in an
essential way� A phenomenon is modelled as a random �eld whose second�order statistics
may di�er at di�erent scales �unlike� for example� fractals��

In this thesis we will focus mainly on two�scale models� The �rst scale �macroscopic
level� models the global shape of the phenomenon� it is constrained by a correlation measure
that controls the interpolation of user supplied data values� We use a technique called
Kriging which was �rst developed in mining geostatistics to perform this interpolation� The
second scale �microscopic level� adds visual detail to the smooth global model� This scale is
modelled by a random function with speci�ed second�order statistics �correlation measure
or spectral density function�� The models at both scales have low storage requirements� for
the global shape the interpolator is a weighted sum of basis functions� and for the small
scale detail we only consider random function given by a small number of coe�cients� For
a certain class of correlation measures our global shape interpolator is a generalization of
Blinn�s 	blobbies
 ����

As a case study� we shall apply our model to simulate clouds� Clouds are interesting

�




 CHAPTER �� INTRODUCTION

because of the wide variety of shapes and visual e�ects they exhibit� Two possible render�
ing techniques for clouds are presented in detail� The �rst algorithm is a generalization of
Gardner�s method to render clouds ����� It has the advantage of being e�cient and im�
plementable in a standard rendering software� The second approach uses volume�rendering
techniques and achieves greater realism at the cost of higher computation time� Both tech�
niques take advantage of the global shape information to simulate semi�global illumination
e�ects� such as self�shadowing�

��� Thesis Overview

The thesis is organized as follows� In Chapter 
 we review the basic theory of random �elds
needed to understand the multi�scale model� We focus mainly on the second�order statistics
of a random �eld� as they are the key to the whole modelling process� The theory of linear
�lters is brie�y mentioned as it underlies most noise synthesis algorithms� At the end of
the chapter we describe one of the most popular random �elds used in computer graphics�
random fractals�

In Chapter � most of the previously related models in computer graphics are presented
and discussed� For each approach� the ability to model three�dimensional fuzzy or partially�
translucent phenomena is discussed� Rendering issues are mentioned as well for each model�

In Chapter � we present our multi�scale stochastic model� We �rst give a general
overview of the model� and then present the two scales separately� For the global shape� the
theory of Kriging �which provides the interpolator� is reviewed in detail along with possible
extensions� This is followed by a description of several existing random functions to model
the small scale detail�

In Chapter � we present how our model can be applied to the simulation of clouds� Ren�
dering issues will be addressed in detail� More precisely� two di�erent rendering techniques
will be presented� one simple heuristic technique which is a generalization of Gardner�s
work� and a more expensive algorithm based on volume rendering techniques�

In Chapter � we present several images synthesized using the model� The modelling
process is presented �rst� The di�erent options available to the user are then illustrated
with concrete examples� Finally images of the rendering of three�dimensional clouds are
discussed�

In Chapter � we summarize and comment on the contributions of this thesis and mention
work in progress and possible directions of future research�



Chapter �

Stochastic Modelling

��� Modelling in Computer Graphics

Computer graphics can be divided into two conceptual parts� modelling and rendering� In
the modelling phase a mathematical model of the scene is generated from a description
provided by a user� The rendering phase then takes this model as an input and generates a
two�dimensional representation suitable for display on a raster device� In practice� however�
both phases cannot be studied independently� of what use to computer graphics is a model
that cannot be rendered� Conversely� a renderer that cannot process any interesting models
is useless� Consequently� although this thesis is mainly concerned with the modelling of
natural phenomena� the rendering of the model will also be discussed in detail�

����� Smooth Surfaces

Mainly for commercial reasons� most of the research in modelling has been devoted to
geometric design� In the car industry� for example� computer graphics has revolutionized
the design process� Instead of drawing or building a physical model of a car by hand� it
is now possible to design substantial components of it using computer assisted systems�
This makes the whole design process faster and provides more freedom to the designer�
Most geometric design systems make use of spline surfaces� i�e� piecewise smooth surfaces�
The whole design process is then a succession of stretching and bending of an initially
�at piece of surface� In practice this is achieved by modifying the control points of the
spline� Furthermore these surfaces can be displayed using standard renderers� e�g�� by
polygonalizing the surfaces� More generally� spline surfaces and related models turn out to
be very successful at modelling �man made� smooth objects� hence their success in industry�
When dealing with natural phenomena� however� these models are often inappropriate�
Nature exhibits great visual complexity� especially at small scales� Hence the aforementioned
models are inappropriate for the simulation of natural phenomena� As an alternative the
user could specify the entire phenomenon by an enormous number of polygons� This is the
approach taken by Snyder and Barr in ����� This approach is clearly not 	user friendly

and is limited by storage capacity� Furthermore� it does not takes advantage of the possible
regularities in the phenomenon�

�
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����� Physically Based Modelling

Recently� a lot of research has been devoted to physically based modelling ����� In this
approach� the user does not specify the entire phenomenon� but rather provides external
forces and material properties of the objects� The physical model then calculates� based
on equations of classical mechanics� the position and shape of each object over time� This
model clearly has the advantage of being inherently dynamical� Hence it is very well suited
for certain animations� This approach� however� su�ers from the limitations of classical
mechanics� For some phenomena� although the equations exist and are well understood�
physical simulation may be practically impossible� This is the essence of the so called
Science of Chaos ����� Due to the nonlinearities of the equations� two simulations having
nearly the same initial condition can have a totally di�erent behaviour� For example� two
nearby smoke particles leaving a cigarette can end up at entirely di�erent locations after
some time� This clearly limits the control the user has over the phenomenon� For other
complex natural phenomena� physical models do not yet exist and their study is still an
area of research in physics or engineering�

����� Nondeterminism

What do we do in the case of unpredictable phenomena� We roll the dice� This is the
approach adopted in most applied sciences when dealing with complex simulations� Instead
of modelling the phenomenon deterministically� some amount of randomness is introduced
to model the complexities of the model� This approach was introduced to computer graphics
by Fournier� Fussell and Carpenter ��
�� This approach is also called data ampli�cation�
the initial data which are being ampli�ed are the macroscopic features and the statistical
properties provided by a user� The model presented in this thesis falls into this category�
The phenomenon is modelled as a random function de�ned in ��space� It is therefore limited
to phenomena which can be described as the set of values of a certain function� Examples of
such phenomena include mountain terrain� hazy or partially translucent media and water�
These types of functions are known as random �elds� The basic theory of random �elds
will be reviewed in the next section� More precisely� �rst the notion of random variable
will be explained� and then the second�order statistics of a random �eld will be introduced�
speci�cally the variogram� covariance function� correlation function and the spectral density
function� The famous Khintchin theorem is derived from simple heuristic arguments using
the spectral properties of a random �eld� To understand most random �eld synthesis
algorithms� the theory of linear �lters will be brie�y reviewed� At the end of this chapter
we will be devoting a section to random fractals� because of its popular use in computer
graphics�

��� Probability Theory Review

This section presents rather informally the basic notions of random �elds� The goal is to
emphasize the main concepts underlying the model� rather than giving a complete and
rigorous mathematical presentation� For a rigorous presentation of the material see �����
Most of the heuristic arguments are taken or adapted from �����



���� PROBABILITY THEORY REVIEW �

����� Random Variables

A random variable X is a variable which takes all the possible values assigned to each
realization of a phenomenon� For example� in the case where the phenomenon is 	the
tossing of a coin
� then X can take only two values �e�g�� � means 	heads
 and � means
	tails
�� The overall behaviour of a random variable �or sets of them� is governed by a
probability distribution� In the case where the set of possible realizations is discrete� the
probability distribution is simply a function P �X � x� which assigns a probability �between
� and �� to the event x� Summing over all possible events gives�X

all possible x

P �X � x� � �� �
���

In the continuous case the probability distribution is a function f � where f�x� is the prob�
ability that X has a value between x and x  dx� The continuous version of Equation 
��
becomes� Z

all possible x

f�x� dx � �� �
�
�

A probability distribution thus entirely characterizes the stochastic phenomenon� In prac�
tice� this distribution is hard to �nd directly or does not exist� Thus� instead of working with
the probability distribution we use statistics of the random variable X � A statistic is simply
a function of the variable X that provides 	useful
 information about the phenomenon�
The simplest statistic is the expectation of X �

� � E�X � �

Z
x f�x� dx� �
���

Intuitively� � is the mean value of the variable X � A measure of how the values of X are
distributed around the mean is given by the variance statistic�

�� � V ar�X � � E��X � ���� � E�X��� ��� �
���

The knowledge of these two statistics �� and ��� entirely determines the probability density
in case the phenomenon is Gaussian� more precisely� if the probability density function f is
given by�

f�x� �
�p

��

exp

�
��



�
x� �

�

��
�

�
���

This is one of the reasons why the Gaussian distribution is so popular in the applied sciences�
For most other distributions one needs higher order statistics� more precisely statistics
having terms

E�Xn� �
���

where n is greater than 
� In many cases� however� these phenomena can be approximated
by Gaussian distributions�

����� Random Fields

Most phenomena cannot be modelled using only a single random variable X � For example�
if X is the value of the Dow Jones� then it would only model the behaviour of the stock
market at a single instant of time� This is clearly not useful when one wants to predict
future values� The solution is to have a di�erent random variable at each time t� Hence
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Figure 
��� White noise

we de�ne a random process as a function X�t� which returns a random variable for each
value of time t� More generally we can consider random �elds� where we allow the domain
of the function to have a higher dimensionality� For example we can model terrain as a
height random �eld h�x� y�� in this case the argument is two�dimensional� An example of
a three�dimensional domain can be given by clouds� Clouds can be modelled as density
maps� for example when a value of one indicates total opacity and a value of zero stands for
total translucence� the intermediate values give all the interesting visual e�ects� A dynamic
phenomenon such as cloud formation can be modelled by a four�dimensional random �eld
d�x� y� z� t�� for each �xed t we get an instance of the previous three�dimensional model�
In the rest of this thesis a random �eld will be denoted by R�t�� where t is a variable of
any of the above dimensions� Note that we can also allow the range of the function R to
be of a higher dimension� For example� when wind velocities are modelled� the function R
is three�dimensional� The behaviour of the random �eld is given by a probability density
function which depends also on the argument t� In other terms for each value of t a density
function ft�x� has to be speci�ed� As a consequence� the two statistics introduced earlier
now also become functions of the argument t� � � ��t� and �� � ���t�� In the next section
we will introduce other statistics� which are speci�c to random �elds�

����� Correlation Measures

Let us consider the most simple random �eld� for each value of t the function returns an
independent random variable� Independence means that the value of the �eld at a certain
location t is una�ected by the values at other points� What we get is something called white
noise� Those who fall asleep in front of their television set are surely familiar with �gure 
���
however it doesn�t model any interesting visual natural phenomena� Discernible structure
is lacking� When we consider a mountain terrain� for example� we expect the heights at two
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Figure 
�
� Two correlated random �elds

nearby positions to be nearly the same �except of course near a steep cli��� This structure
is captured by a correlation measure� Intuitively� the correlation measure tells us how the
values of the random �eld R at two given positions t and s are related� Figure 
�
 shows
two samples of a correlated random �eld� Clearly these pictures remind us of clouds� The
most 	natural
 correlation measure is the variogram� which is basically the mean square
di�erence of the random �eld at two locations t and s�

��t� s� �
�



E��R�t��R�s����� �
���

Another possible correlation measure is the covariance� which is de�ned by�

C�t� s� � E�R�t�R�s��� ��t���s�� �
���

Intuitively� positive values of the covariance function indicate that the values of the random
�eld at the two positions tend to be close� Conversely� negative values of the covariance
indicate a probable large di�erence in values� It is sometimes preferable to work with the
normalized version of the covariance� which is the correlation function

	�t� s� �
C�t� s�

��t���s�
� �
���

The functions just introduced along with the variance ���t� are the second�order statistics
of the random �eld� In the rest of this thesis it will be assumed that second�order statistics
are su�cient to characterize the phenomenon� the underlying assumption being that higher
order statistics do not add more visual detail� This is widely assumed in most applied
sciences� refer to computational vision ���� or geostatistics ����� Lewis uses this assumption
in computer graphics �
��� The domains of these functions have a dimensionality that is
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twice as high as that of the random �eld� One way to lower this high dimensionality is to
assume that the correlation measures only depend on the separation h � s� t between the
two locations� Intuitively� this means that the phenomenon has similar statistics everywhere�
The covariance function� for example� now becomes a function of the single variable h�

C�t� s� � C�t� t  h� � C�h�� �
����

And the correlation function is equal to�

	�h� �
C�h�

C�	�
� �
����

meaning a simple scaling of the covariance� Another widely accepted assumption is to
consider only random �elds with constant means� That is� those ��t� that do not depend
on t�

��t� � � �
��
�

for all t� Although there are many phenomena for which this assumption does not hold�
it works well in practice as will be seen later in this thesis� The two above assumptions
�dependence on distance only and constant mean� are referred to as the homogeneity as�
sumption in the statistics literature ���� ����� A random �eld satisfying these assumptions
is called homogeneous� Without loss of generality we can assume this constant mean to be
equal to zero� This simpli�es the notations that follows�

Next we state some properties of these correlation measures which directly follow from
their de�nitions and the above simplifying assumptions� The covariance and the correla�
tion functions have the property of being positive de�nite� To see this consider n points
t�� t�� � � � � tn� and let Y be a random variable de�ned by the following linear combination�

Y � 
�R�t��  
�R�t��  � � � 
nR�tn�� �
����

From the fact that the variance of any random variable is positive� we get�

V ar�Y � �
nX
i��

nX
j��


i
jC�ti � tj� � �� �
����

Dividing by C�	� � � on both sides yields the same inequality for the correlation function
�by Equation 
����� Functions satisfying these inequalities for any choice of the coe�cients

i are called positive de�nite� hence both the covariance and the correlation function fall
into this class� These inequalities limit the choice of possible candidates for covariance and
correlation functions� Conversely one can prove that any positive de�nite function is the
covariance function of some random �eld ����� hence the covariance functions are exactly
the positive de�nite functions� From the above inequalities we can deduce the following
properties by appropriate choices of coe�cients 
i�

C�	� � � �
����

C��h� � C�h� �
����

jC�h�j � C�	�� �
����

Similar relations can be obtained for the correlation function� The terms of Equation

��� can be arranged in a matrix� which is the covariance matrix of the random variables
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R�t��� R�t��� � � � � R�tn��

C �

�
BBBB�

C�	� C�t� � t�� � � � C�t� � tn�
C�t� � t�� C�	� � � � C�t� � tn�

���
���

� � �
���

C�tn � t�� C�tn � t�� � � � C�	�

�
CCCCA � �
����

The matrix is clearly symmetric� which means that all its eigenvalues are real� furthermore
Equation 
��� implies that these eigenvalues are positive� To see this take the 
i to be equal
to the components of an eigenvector corresponding to one of the eigenvalues� This fact will
be used later in this thesis� The variance of the random variable Y can also be written
down in terms of the variogram ��

V ar�Y � � C�	�
nX
i��


i

nX
j��


j �
nX
i��

nX
j��


i
j��ti � tj� � �� �
����

If we assume that the sum of the coe�cients vanishes� more precisely if

nX
i��


i � �� �
�
��

then we get an inequality very similar to Equation 
��� for the variogram�

V ar�Y � � �
nX
i��

nX
j��


i
j��ti � tj� � �� �
�
��

Assumption 
�
� is very common in linear geostatistics ����� where one often passes from a
formula for the covariance to a formula for the variogram simply by substituting ���� for
C� A consequence of Equation 
�
� ���� is that the variogram cannot grow faster than khk�
as khk tends to in�nity� In fact�

lim
khk��

��h�

khk� � �� �
�

�

Therefore� variograms can be unbounded� but their rate of divergence is bounded� The
variogram also satis�es the following obvious properties�

��h� � � �
�
��

��h� � ���h� �
�
��

��	� � �� �
�
��

The covariance function and the variogram are in fact directly related� in certain cases�
If we assume that the covariance exists� then a simple calculation shows that the variogram
is given by

��h� � C�	�� C�h�� �
�
��

This relation also directly implies that the variogram must be bounded by�

��h� � 
C�	�� �
�
��
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and therefore a random �eld with an unbounded variogram cannot have a well�de�ned
covariance function� The existence of the variogram in general does not guarantee that the
covariance is de�ned� The best known counter�example is Brownian motion� whose variance
is unde�ned �i�e�� in�nite�� but has a well de�ned variogram that is known to be

��h� � khk� �
�
��

In some cases� however� when the random �eld has zero mean� ��t� � �� and the variogram
tends asymptotically towards some value A� i�e��

lim
khk��

��h� � A� �
�
��

then one can de�ne a pseudo�covariance equal to

C��h� � A� ��h�� �
����

This de�nition coincides with Equation 
�
� when the covariance is well de�ned� and indeed
A � C�	��

����� Isotropic Random Fields

All the aforementioned correlation measures depend on a separation h� which means that
we can model phenomena with high anisotropies� i�e�� with characteristics along preferred
directions in space� A strong simplifying assumption is to consider instead isotropic random
�elds� isotropy meaning that the correlation measures depend only on the distance khk
between two points� In mathematical terms�

C�h� � C�khk� � C���� �
����

Such correlation measures are now one�dimensional� and therefore we can restrict our anal�
ysis to one�dimensional functions� which highly simpli�es the analysis involved� The class
of isotropic correlation functions 	 is more restricted than the general case� as will be shown
directly� All covariance functions have a lower bound inversely proportional to the dimen�
sion d of the domain of the random �eld� To see this� we consider d  � points such that
their relative distances all equal � � Equation 
��� with the 
i all set to � is�

C���
d��X
i��

d��X
j��

	��� � �� �
��
�

As 	��� � � this expression becomes�

�d ��  ��d ��� � �d ���	��� � � �
����

or� after simpli�cations�

	��� � ��
d
� �
����

Hence this gives a lower bound for an isotropic correlation function� the bound getting
tighter with the dimension� In ���� tighter bounds are given� using properties of the spectral
density function �this function will be de�ned in the next section�� For example� for d � 

the bound is ������ and for d � � it is ���
���
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Many natural phenomena are highly anisotropic� Consider for example the ripples on
the surface of the sea caused by the wind� However these anisotropies can be modelled by
transforming an isotropic correlation measure� For isotropic random �elds� all points lying
on the same sphere centred at a point t have the same correlation with t� One can instead
insist that all points on an ellipsoid about t have the same correlation� An ellipsoid can be
obtained from a sphere by a simple scaling transformation along a set of axes� Hence we
can de�ne the covariance �or the variogram� as�

C�h� � C�htQh� �
����

where Q is a d � d positive�de�nite and symmetric matrix and d is the dimension of the
domain of the random �eld� ht denotes the transpose of the vector h� Correlation measures
de�ned in such a manner are called ellipsoidal ����� Setting Q to the identity matrix brings
us back to a standard isotropic correlation� All the properties of the isotropic case are
preserved in this more general setting� The matrix Q is a rather unintuitive way to specify
anisotropies for a general user� The user could instead specify the major axes and the
corresponding eccentricities ei� From these values Q can be calculated automatically� We
form a diagonal matrix D with respect to the coordinate system de�ned by these axes� with
elements 
i� given by�


i �
�

e�i
� �
����

If P is the transformation matrix from the canonical coordinate system to the system given
by the major axes of the ellipsoid� then

Q � PtDP� �
����

����� Spectral Representation of a Random Field

In this section we will review the characteristics of a homogeneous random �eld in the
frequency domain� The main result is that the spectral density function and the covariance
form a Fourier transform pair� To show this result� the approach taken by VanMarcke in
���� will be used� which does not require the use of complex random �elds� Furthermore�
only the case where the domain is one�dimensional will be considered� since the extension
to higher dimension is straightforward �����

One of the most elementary homogeneous random �elds is the random harmonic oscil�
lator of frequency 
� de�ned by�

X�t� � A cos�
t ��� �
����

where A is a random variable with zero mean and � is uniformly distributed over the interval
��� 
��� Furthermore these two random variables must be independent� The harmonic
oscillator has zero mean and a variance given by�

�� � E�X��t�� � E�A��E�cos��
t ��� �
�



E�A��� �
����

This shows that the variance is directly proportional to the average energy �or power� of
the oscillator� By using some basic trigonometry� it is possible to calculate the covariance
as well�

C��� � E�X���X���� � �� cos�
��� �
����
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Let us now consider any homogeneous random �eld R�t�� It can be proven ����� that any
such �eld can be closely approximated arbitrarily by a sum of �random� harmonic oscillators�

R�t� �
NX

i��N

Ri�t� �
����

where
Ri�t� � Ai cos�
it  �i�� �
��
�

The random amplitudes Ai and random phase angles �i are mutually independent� Hence
the variance of the random �eld R�t� is given by

C��� � �� �
NX

i��N

��i �
NX

i��N

�



E�A�

i �� �
����

Let us assume that the spectrum� i�e� the set of frequencies 
i� is a uniform partition of
the interval ��N�N �� More speci�cally the frequencies are given by 
i � !
�
i � ���
�
This analysis shows that the variance �power� is distributed over the discrete frequencies

i� This suggest the introduction of a spectral mass function�

S�
i�!
 �
�



E�A�

i �� �
����

The function S is called the spectral density function� and gives the contribution of each
frequency to the total variance �power� of the random �eld� Until now we have only consid�
ered discrete frequencies� The usual way to extend the theory to the continuous case �for
applied mathematicians �� is to let N and !
 tend to in�nity and zero respectively� while
holding their product constant� By taking these limits in Equation 
��� and using Equation

���� we get�

C��� �

Z ��

��
S�
� d
� �
����

We now try to �nd a similar relation between the correlation function and the spectral
density function� We begin by observing that

C��� � E�R���R���� �
NX

i��N

Ci���� �
����

Knowing the covariances Ci of each oscillator� the covariance can be expressed in terms of
the spectral density function�

C��� �
NX

i��N

S�
i�!
 cos�
i��� �
����

Using the same limit argument as before we �nally get the relation in the continuous case�

C��� �

Z ��

��
S�
� cos�
�� d
� �
����

This is the famous theorem of Khintchin� which states that the spectral density function
and the covariance form a Fourier transform pair� Therefore both functions have exactly
the same modelling power from a theoretical point of view� The Khintchin theorem also
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provides us with a characterization of the allowed covariance functions for homogeneous
random �elds� namely as the inverse Fourier transform of any positive function S�
� � ��
Because of Equation 
�
�� the variogram is also related to the spectral density function by�

���� �
Z ��

��
S�
���� cos�
��� d
� �
����

In the case of isotropic random �elds it is unnecessary to consider spectral densities with
domains of dimension higher than one� This is because the Fourier transform preserves
isotropy� hence the spectral density of a random �eld with isotropic covariance is also
isotropic� However� not all inverse Fourier transforms of positive functions are covariance
functions of isotropic random �elds� One has to consider other transforms instead� If S�
� is
any positive function� then all the two�dimensional isotropic covariance functions are given
by�

C��� � 
�

Z ��

�
S�
�J��
��
 d
 �
����

where J� is the zero order Bessel function of the �rst kind ����� For the three�dimensional
case� all such covariance functions are given by the transformation�

C��� � ��

Z ��

�
S�
�

sin�
��


�

� d
� �
����

Similar transformations exist for higher dimensional isotropic random �elds ����� There
is a surprising result mentioned in ����� which is only true for isotropic spectral density
functions of random �elds with a three�dimensional domain� The result is that for this case
the spectral density function must be monotonically decreasing� In particular no oscillating
functions are allowed� Note that this does not imply that the correlation function has to
be monotonically decreasing� as this property is not necessarily preserved by the Fourier
transform�

����� Transforming Random Fields

Until now we have not assessed the problem of actually generating a random �eld with
prescribed correlation function �or spectral density function�� One way to generate such
a random �eld is to transform a random �eld that is easy to generate� In most cases the
latter will be white noise� which has a correlation function that is the delta function and
that has a constant spectral density function�

One of the most common transformations is the shift invariant linear �lter� which is well
known in signal theory� A �lter can be viewed as a black box� which� when given an input
signal x�t� produces an output signal y�t� � Lfx�t�g� A linearity condition is imposed on
the �lter� i�e� if x� and x� are two signals and 
 is a constant then

Lf
x��t�  x��t�g � 
Lfx��t�g Lfx��t�g� �
��
�

The �lter is shift invariant if the following equality holds for all input signals x�t��

Lfx�t h�g � y�t h�� �
����

One such �lter is explicitly given by�

y�t� �
Z
k�s� t�x�s� ds� �
����
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This is actually a convolution of the signal x�t� with the convolution kernel k�t�� The
�lter is thus entirely speci�ed by the function k�t�� As in the previous section we explore
what happens in the 	frequency domain
� Let X�


�� Y �


� and K�


� denote the Fourier
transforms of x�t�� y�t� and k�t� respectively� By applying the Fourier transform to both
sides of the equality in Equation 
��� and using some calculus we get

Y �


� � K�


�X�


�� �
����

It is the well known result that a convolution corresponds to a direct multiplication in the
frequency domain� Now we understand why this transformation is called a �lter� A well�
chosen function K attenuates or ampli�es the values of the input signal X � For example if
K is a box centred at the origin� then it acts as a 	low pass
 �lter� killing all the higher
frequencies �typically unwanted noise� of the input signal X � Let us now return to random
�elds� Let the input signal x�t� be a random �eld with known covariance and spectral
density functions Cx����� SX�


� respectively� A simple calculation shows that the covariance
Cy����� of the output random noise y�t� is given by

Cy����� �

Z Z
k�����k�����Cx����  ��� � ���� d���d���� �
����

Thus by choosing the right kernel k we can get the desired correlation� There exists a similar
relation between the spectral density functions� This relation is established as before by
taking the Fourier transform on both sides of the equality of Equation 
��� and using some
basic calculus�

SY �


� � jK�


�j�SX�


�� �
����

Again the relation is simpler in the frequency domain� The Fourier transform of the kernel
K is easier to construct than the kernel itself� To summarize� Equations 
��� and 
��� tell
us how to generate the random �eld� and Equations 
��� and 
��� tell us how to �nd the
kernel� At �rst glance� modelling in the frequency domain with the spectral density function
seems much easier� The problem� however� is that we do not live in the world of frequencies
and moreover it is not always easy to think in terms of them� After having generated Y �


�
we have to take an inverse Fourier transform to get the desired random �eld y�t�� As we
will see in subsequent sections� this imposes certain practical limitations on the spectral
approach�

To have a better understanding of the procedure described above let us consider a
speci�c example� We shall consider the case where the input random �eld x�t� is white
noise� its second�order statistics are given by

Cx����� � ������ �
����

SX�


� � � �
����

where � is the Dirac delta �generalized� function� Because of the 	point sampling
 property
of the delta function� Z

k���������� � ���� d��� � k������ �
����

the second�order statistics of the output �eld y�t� are given by�

Cy����� �
Z
k�����k����  ���� d��� �
����

SY �


� � jK�


�j�� �
��
�
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In frequency domain the convolution kernel is thus directly given by the �desired� spectral
density function of the output random �eld� The determination of the kernel from the
covariance function is less straightforward� but is nevertheless possible in certain cases�

��� Random Fractals

����� What is a Fractal �

In this section the theory of a certain class of random �elds will be reviewed� random

fractals� Random fractals were �rst studied by B� Mandelbrot in his now famous Fractal
Geometry of Nature �
��� Fractals have been widely used in computer graphics� and con�
stitute the most popular subclass of stochastic models ��
�� Fractals are especially well
suited to the description of highly irregular phenomena� exhibiting detail at all scales� the
most striking example being the Mandelbrot Set� Most fractals� however� also have the self�
similarity property� which roughly means that the fractal contains copies of itself at smaller
scales� A good illustration of the latter is the von Koch Snow�ake� Exact self�similarity
�such as exhibited by the von Koch snow�ake� is nonexistent in Nature� Therefore Mandel�
brot introduces the concept of statistical self�similarity� This concept will be de�ned more
precisely later� We will �rst consider the one�dimensional case� and then mention extensions
to higher dimensions� There are many ways to de�ne a random fractal� The usual approach
�
�� �
��� is to de�ne a random fractal as fractional Brownian motion �fBm�� That is� a
random �eld F �t� whose variogram is given by�

���� � j� j�H � �
����

Because of the constraint on the growth of the variogram� given by Equation 
�

� the
parameter H cannot exceed �� and by continuity we have H � �� This parameter is directly
related to the fractal dimension D ���� of the fractal� by the relation H � 
 � D� In
particular� contrarily to our intuitive notion of �euclidean� dimension� D can take non�
integer values� The fractal dimension lies actually somewhere between � �H � �� and 

�H � ��� which means intuitively that� when embedded in a plane� the fractal is an object
between a straight line and a plane� Thus� highly irregular curves which tend to �ll the
plane have fractal dimensions close to 
� and curves that slightly deviate from a line tend to
have dimensions close to �� For H � �

�
we get ordinary Brownian motion� The variogram

is self�similar in the sense that for any scaling factor a � � we have�

��a�� � a�H����� �
����

Hence� no characteristic scale can be associated to the variogram� Furthermore� it can be
proven that only variograms of the form de�ned by Equation 
��� are self�similar in this
sense�

����� Spectral Analysis of a Fractal

The variogram of a fractal is clearly unbounded for all the values of H considered� hence�
according to Equation 
�
�� an fBm has no de�ned covariance and cannot be homogeneous�
Therefore all the theory previously developed cannot be applied directly to random fractals�
Fortunately� the increments of an fBm are homogeneous� so the previous theory can be
applied to these increments� It can be shown ���� that in fact Equation 
��� remains valid�
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Therefore� the spectral density function of the random fractal is given by the following
equation�

��H �
Z ��

��
S�
���� cos�
��� d
� �
����

Using integration by parts it is not to hard to verify that a spectral density function equal
to

S�
� � �


�
�
����

is a solution of the above equation� if � � 
H  �� The spectral density is non�zero for all
frequencies� This implies that an fBm has detail at all scales� which with the self�similarity
property� is the most important characteristic of fractals� The exponent � is related to the
fractal dimension D by

D �
�� �



� �
����

As we decrease the exponent � �and hence increase the fractal dimension D�� the spectral
density function takes higher values at the high frequencies and smaller values at the low
frequencies� This increase in high frequencies results in increased small�scale deviations�
hence the curve will tend to be plane �lling� An increase of the exponent � has the exact
reverse e�ect� the low frequencies tend to dominate� and hence the curve has mainly large�
scale deviations and is geometrically closer to a straight line�

The obvious way to generalize these de�nitions to higher dimensions ����� is to assume
that the variogram is isotropic� namely that

��h� � khk�H � �
����

The spectral density function then is equal to

S�


� � k


k�� � �
����

If the dimension of the argument is d then the parameters H and � are related to the fractal
dimension D by the following relations�

H � d ��D �
����

� � 
d� 
D �� �
����
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Previous Work

In this chapter we review previous models of natural phenomena� For each model we
discuss its applicability to three�dimensional fuzzy and partially translucent phenomena�
The main di�culty with most models is their high storage cost� Most of these models
only synthesize random fractals� These are� the spectral approach of Voss� the stochastic
displacement technique of Fournier et al� and more recently the constrained fractals of
Szeliski and Terzopoulos� Lewis generalizes stochastic displacement to random function
with arbitrary correlation functions� Gardner�s model is speci�c to clouds� The models
of Kajiya and of Perlin and Ho�ert are alternatives to stochastic modelling for simulating
natural phenomena�

��� Spectral Models

Spectral models are characterized by the fact that the phenomenon is entirely speci�ed by
the spectral density function� The most common approach is to �lter white noise in the
frequency domain� and then to take the inverse Fourier transform in order to obtain the
resulting phenomenon� Voss ���� was the �rst to suggest a practical approach to simulate
visual phenomena� He considers only fractal spectral density functions� namely those given
by Equation 
���� Let us consider in more detail how his algorithm works� The random
�eld Y is �rst generated in the frequency domain by �ltering a white noiseW �


�� according
to equation 
����

Y �


� � k


k��
�W �


�� �����

Next Y is sampled at a set of N discrete frequencies 


��


�� � � � �


N��� Then the random
�eld y�t� is generated at a set of discrete points t�� t�� � � � � tN�� using the discrete Fourier
transform �in practice� the Fast Fourier Transform��

yk � y�tk� �
N��X
l��

Y �


l� exp�
�i


l � tk� ���
�

where 	�
 denotes the standard dot product of two vectors� This method is relatively fast
�due to the N logN complexity of the FFT�� The major drawback is that all the coe�cients
yk have to be generated at the same time for the FFT algorithm to be usable� This is
particularly prohibitive in terms of storage for the three�dimensional case �e�g� for clouds��
As an example� if the sampling grid is 
��� 
��� 
�� we must store �at least� 
�� bytes�
i�e�� �� megabytes� The major drawback� however� of this algorithm as a modelling tool� is

��
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the lack of control over the global shape of the phenomenon� The only way to change the
global shape is to modify the random seed of the white noise generator� The global shape
one obtains in this way is� however� totally unpredictable� Control over the global shape is
important in dynamical simulations and design� Furthermore no e�cient algorithms have
yet been developed to render volumes given as a set of values at discrete points� especially
if the phenomenon in question is a density map� such as a cloud� Kajiya and VonHerzen
have developed such physically based rendering algorithm for the case of density arrays
�
��� which is a brute force extension of Blinn�s earlier work ���� but the computation times
involved remain prohibitive� Voss� however� has produced some very impressive pictures of
clouds by modelling a three�dimensional cloud as an ensemble of 	thin
 two�dimensional
clouds� This cuts down the storage requirements and simpli�es the rendering somewhat�

Recently Anjyo ��� has generalized Voss�s work for spectral distributions of the form

S�
� � 
m

�c 
��n
�����

where m� c� � and n are parameters� For m � c � � and n � � we get the fractal model�
The �nal random �eld R�t� is given by a sum of N stochastic waves Wi�t�� Each stochastic
wave is the product of two one�dimensional random process Xi� and Xi�� generated by the
spectral method� along the directions di� and di��

Wi�t� � Xi��di� � t�Xi��di� � t�� �����

For example� it is possible to approximate the known spectral distribution of ocean waves
with this model� His approach� although more general� su�ers from the same limitations as
Voss�s model�

��� Stochastic Displacement

Fournier� Fussell and Carpenter introduce in ��
� the most popular fractal based model�
random midpoint displacement� Their model is very e�cient� it can be implemented by
using only addition and shift operations� Furthermore the global shape can be controlled
by specifying the value of the phenomenon at certain given points� Hence they call their
algorithm stochastic interpolation� As in Voss�s model� it is limited to fBms� Instead of
using the spectral characterization of fBm� they use the variogram as a modelling tool� The
algorithm is recursive� at each step more detail �higher frequencies� is added by re�ning
the sampling grid into twice as many samples in each direction� The new values are linearly
interpolated from the old ones and then perturbed by some Gaussian noise having zero
mean and a variance which must satisfy Equation 
���� A lot of e�ort has been put into
ray�tracing these models ����� and ����� Again this method requires a lot of memory and
hence is unsuited for three�dimensional phenomena� Furthermore� as noted in ����� this
model produces only true fBm in the case of Brownian motion �H � �

��� because only the
new points are perturbed at each recursion level� This shortcoming may produce visible
creases in the case of terrain modelling� though whether or not such artifacts are visually
annoying is arguable� Voss overcomes this problem by updating all the points at each level
�����
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��� Generalized Stochastic Subdivision

Lewis in �
�� generalizes the midpoint displacement algorithm for non�fractal random �elds�
The statistics of the random �eld are speci�ed by a correlation function� He was the �rst to
suggest the use of the correlation function as a modelling tool in computer graphics� Instead
of linearly interpolating the new values at each level� the values are estimated from a set
of points at the coarser level� The estimation procedure involves the solution of a linear
system� which depends on the correlation function� As the model presented in this thesis
also uses an estimation procedure� we will delay the explanation of estimation methods to a
later chapter� Lewis� model has the same drawbacks as the previous stochastic subdivision
algorithm� Because fractals have no de�ned covariance� this model is unable to generate
fBms� It therefore does not truly generalize the previous stochastic subdivision algorithm�

��� Constrained Fractals

Recently� Szeliski and Terzopoulos presented in ���� a new model to generate fractals� The
main advantage of their model is the possibility of controlling the global shape of the phe�
nomenon� The model has two components� a smooth component �a deterministic spline
which approximates the data constraints provided by the user� and a stochastic compo�
nent that gives the fractal statistics� This model thus synthesizes two popular modelling
techniques in computer graphics into one� The model is generated by solving a variational
problem� The quantity to be minimized is the sum of the 	spline energy
 and the 	data
constraint
 energies� It turns out that the frequency response of the spline energy has
a fractal spectrum �see Equation 
����� As energies are related to probabilities by the
Boltzmann equation of thermodynamics� the variational problem can be interpreted as a
maximum a posteriori �MAP� estimation problem� where one wants to generate the sample
with the highest probability� given the data constraints and the fractal a priori model� The
variational problem is solved by using a stochastic coarse�to��ne relaxation scheme� At
each relaxation step a certain amount of noise is added� where the variance is proportional
to the grid level� This method� however� has the same storage requirement problem as
the FFT�based approach and� hence� is unsuited for three�dimensional phenomena such as
clouds�

��� Textured Ellipsoids

A model more in the spirit of the one presented in this thesis was proposed by Gardner �����
His model works essentially for density maps� which includes clouds and trees� Gardner uses
the ellipsoid as the basic building block of his model� The user speci�es the global shape
of the phenomenon by arranging an ensemble of ellipsoids� The small�scale detail is then
added by using a �solid� texture� Gardner uses an analytic random function texture� This
texture function will be studied in more detail in a later chapter� His rendering algorithm is
very simple� He modi�es the translucence threshold as a function of the projected equation
of the ellipsoid onto the viewing plane� This threshold is very high near the border of the
ellipsoid and very low near the centre of the ellipsoid� His rendering algorithm can easily be
implemented into a standard ray tracer� The drawback of this model is that it is somewhat
restricted to ellipsoids and translucent phenomena�
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��� Thick Textures

In the SIGGRAPH �� proceedings one can �nd two models that are similar in spirit� In both
models one de�nes the global shape of the phenomenon with standard graphics primitives�
e�g� polygons or patches� and then adds small�scale detail by mapping a 	thick
 texture onto
it� Kajiya �
�� calls this texture texels� A texel is a cube containing microsurfaces� Instead
of specifying all the microsurfaces� Kajiya introduces three functions for each texel� �i� a
scalar density function� which basically measures the density of microsurfaces at a speci�c
point of the cube� �ii� a frame bundle� which is a collection of three vectors specifying the
local orientation of the microsurfaces within the cube� �iii� a bidirectional light re�ection
function that indicates the surface properties of the microsurface� The entire 	thick
 texture
is given by mapping many texels onto the object� Of course one has to be careful that the
texels blend together in a smooth way� Kajiya uses this model to simulate fur� and has
generated the most impressive image of a teddy bear to date� However the computation
times are far more than prohibitive�

The other model is due to Perlin and Ho�ert ����� In this model all phenomena are
simulated as density functions D�x�� The soft region of the object is de�ned as the ensemble
of x for which � � D�x� � �� The modelling power comes from the transformation of the
soft region by di�erent functions� This extends Perlin�s earlier work in functional modelling
����� With this model Perlin and Ho�ert are able to model fur� �re and glass� The rendering
is accomplished by using expensive volume�rendering techniques�



Chapter �

The Model

The sciences do not try to explain� they hardly even try to

interpret� they mainly make models� By a model is meant a

mathematical construct which� with the addition of certain verbal

interpretations� describes observed phenomena� The justi	cation of

such a mathematical construct is solely and precisely that it is

expected to work�

John Von Neumann

In this chapter we present the main contribution of this thesis� namely a new multi�scale
stochastic model for computer graphics� In the next section we describe the importance
of scales in modelling natural phenomena� and show how our model separates the scales�
In the second section the model of the global shape is presented along with the theory of
Kriging� The third section describes many existing random functions which can be used
to model the small�scale detail� We conclude this chapter with a model called stochastic
Kriging which combines the two scales elegantly� and we will mention possible extensions
of the model to more scales�

��� Separation of Scales

When we observe a natural phenomenon� we �nd that its visual characteristics change with
scale� Consider for example a mountain� at a very large scale �i�e�� viewed from far away�
only the major trends of the relief are visible� at a medium scale �i�e�� by looking only at
a portion of the mountain� we start to observe the distribution of vegetation and di�erent
rock types� at the small scale �i�e�� when observing the ground� we see the structure of a
particular vegetation or rock type� There is no reason for the correlation measures to be
the same at each scale� All fractal models in computer graphics� however� assume that the
statistics are the same at all scales� because of the statistical self�similarity property given
by Equation 
���� Therefore it seems appropriate to consider multi�scale models in which
the �nal model is the sum of several models at di�erent scales� The model at each scale
is speci�ed by a di�erent correlation measure� The correlation measure alone� however� is
insu�cient� We also want to be able to constrain the values of the phenomenon at certain
locations� This allows a control over the phenomenon which is essential in design and
animation�

In this thesis we will focus mainly on two�scale models� the global shape and the small�
scale detail� The global shape captures only the main features of the phenomenon� It
emerges if we 	blur
 �remove the high frequencies� of the phenomenon� The global shape
on its own is very smooth and makes the phenomenon look arti�cial� or man made� However�


�
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as will be shown later in this chapter� this smooth shape will be very useful in the rendering
process� such as the self�shadowing e�ect for clouds� The small scale detail is added to
make the phenomenon look more 	rough
 or 	complex
� The user has control over the
phenomenon by specifying the value of the global shape at certain locations�

One can argue that it is unnecessary to restrict oneself to the theory of random �elds�
That is� to consider only valid correlation measures and spectral density functions� As we
are only interested in the visual characteristics of our model� another approach would be
to create 	ad hoc
 functions for all kinds of phenomena� These functions are generally
constructed by trial and error� More precisely� in this approach one starts with some
function and then modi�es it according to the visual result produced� This is the approach
taken� for example� by Perlin ����� The advantage of our more rigorous approach is that
we can estimate correlation measures and spectral density functions from pictures of real
phenomena using well established techniques� Furthermore there already exists abundant
literature about such functions for many phenomena� Another advantage of our model
is its generality� The same mathematical framework can be applied to a large variety of
phenomena� Finally� the rigorous models can be analyzed more precisely� For example�
aliasing problems can be avoided in advance if we know the spectral characteristics of our
random �eld exactly�

��� The Global Shape

����� Smooth Estimation

The user constrains the global shape by specifying n scalar values di at the correspond�
ing locations ti� The global shape constrained by these data can then be calculated by
interpolation or by other approximation techniques� Exact interpolation may not seem to
be a crucial condition in computer graphics� spline approximation techniques could also be
used� However it turns out� as will be demonstrated� that exact interpolation has a simple
mathematical formulation� Hence the value of the global shape at another location t is
given by smooth interpolation from the given values� In smooth interpolation we look for a
smooth function L�t� such that

L�ti� � di �����

for i � �� � � � � n� Furthermore we require that the function is 	well behaved
 away from
the data locations� It is well known that Lagrange interpolation can take huge values away
from the data locations� hence that scheme is not suitable� Another approach is to use a
so called thin plate interpolation ��� �
�� ����� This interpolation behaves like a thin plate
constrained at the data locations which means that it tends to remain �at and hence is well
behaved away from the data locations� A more general approach is to view the interpolation
problem as an estimation problem� In �linear� estimation theory we wish to compute the
value of a random �eld at a certain location t� knowing �i� the random �eld at a set of
locations ti and �ii� the �second�order� statistics of the random �eld� In our case the known
values are the di� and the second�order statistics are provided by a correlation measure�

Let us assume that the global scale is modelled by a homogeneous random �eld R�t�
with known second�order statistics� Therefore we can interpret the values di as the values
of this �eld at the locations ti�

d� � R�t��� � � � � dn � R�tn�� ���
�
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Because we only consider second�order statistics it is su�cient to work with estimators of
the form�

L�t� �
nX
i��


idi� �����

where the coe�cients 
i have to be determined� We impose two reasonable constraints on
such estimators� First an estimator must be correct �unbiased��

E�L�t�� � E�R�t�� � �� �����

This corresponds to the equation�
nX
i��


i � �� �����

This condition at most determines one of the unknowns 
i� Therefore we need another
constraint� A sensible one is to insist that the estimator have the minimum possible variance�
in other words

E��L�t��R�t���� �����

is minimum over all such estimators� An estimator satisfying the above constraints is called
a best linear unbiased estimator or in short BLUE� Here� 	best
 means minimum variance�
In the next section a technique called Kriging will be described� which solves the above
estimation problem�

����� Kriging

Let us �rst assume that the covariance of the random �eld R�t� is well de�ned� It is
important to note that in the development which follows it is not necessary to assume that
the covariance function is isotropic� The minimality condition given by Equation ��� can
be written in terms of the covariance function

C�	�� 

nX
i��


iC�t � ti�  
nX
i��

nX
j��


i
jC�tj � ti�� �����

This is a classic �constrained� minimization problem which can be easily solved by intro�
ducing a Lagrange multiplier �� This procedure provides a system of n � linear equations
known as the Kriging system �����

nX
j��


jC�tj � ti�� � � C�t � ti�� i � �� � � � � n �����

nX
j��


j � ��

More simply� in matrix form the system is

M


 � b�t�� �����
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where M is an �n  �� � �n  �� matrix depending only on the data locations ti and the
covariance C�h�� More precisely�M is equal to the following matrix�

M �

�
BBBBBB�

C�	� C�t� � t�� � � � C�t� � tn� �
C�t� � t�� C�	� � � � C�t� � tn� �

���
���

� � �
���

���
C�tn � t�� C�tn � t�� � � � C�	� �

� � � � � � �

�
CCCCCCA
� ������

b�t� is an �n ���dimensional vector depending on t� the data locations ti and the covariance
C�h� and is equal to

b�t� � �C�t � t��� � � � � C�t� tn�� ��
t� ������

The vector 


 is the unknown� and is given by




 � �
�� � � � � 
n����t� ����
�

At �rst glance this may look highly ine�cient because we must solve a linear system for
each location t� However� as we will demonstrate� we have to solve one system for a given
set of data values� Let us start by rewriting the estimator in vector form�

L�t� � 


td ������

where d is equal to the 	data
 vector�

d � �d�� � � � � dn� ��
t� ������

Because M is symmetric �see Equation 
���� the estimator can be rewritten as�

L�t� � b�t�t�M���td � b�t�tM��d� ������

Let y be the solution of the linear system�

My � d� ������

With this new vector the estimator can be rewritten as�

L�t� � b�t�ty� ������

As the system given in Equation ���� does not depend on the location t� this means in terms
of computer graphics that it only has to be solved at most once per frame� The dependence
on the location is now included in the expression for the estimator �Equation ������

L�t� �
nX
i��

yiC�t� ti�� ������

The linear system in Equation ���� has a unique solution if and only if the Kriging matrix
is strictly positive de�nite and the data locations are mutually distinct� The �rst condition
is satis�ed if the covariance is strictly positive de�nite� Because the Kriging matrix is
symmetric and positive de�nite� many stable numerical algorithms exist to solve the linear
system such as the Cholesky algorithm� Instability may however arise if the data locations
are very close together� One way to eliminate these instabilities is to replace a group of
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nearby data points by a single point that has a value which is then a weighted average of
the values at the previous data�

In case only the variogram is de�ned it is possible to obtain a similar linear system in
terms of the variogram ����� In practice� however� one works with the pseudo�covariance
given by Equation 
���� and solves the Kriging system for the pseudo�covariance function�
Hence the global shape can be speci�ed using only the variogram� and in particular it can
be fractal�

If we consider a Gaussian isotropic correlation function� more precisely if

	�h� � exp���khk��� ������

then the estimator of Equation ���� is an instance of Blinn�s blobbies ���� Hence� for Gaus�
sian correlation functions� the model of the global shape can be viewed as a generalization
of a blobby�

����� Extensions

The above Kriging scheme only applies to random �elds that have a constant mean �see
Equation ����� Many natural phenomena� however� have a mean which varies over space
or time� In the geostatistical literature this non�constant mean is referred to as a drift� In
case the drift is known� it is possible to introduce the new random variable�

Y �t� � R�t�� ��t�� ���
��

This new variable Y has the same covariance as the original random variable R and has zero
mean� Hence we can apply the above Kriging scheme to the variable Y � which produces an
estimator K�t�� The �nal estimator for R is then given by�

L�t� � ��t�  K�t�� ���
��

This works well if the drift is known exactly� but unfortunately this is rarely the case in
practice� When the drift is unknown� one approach is to assume it has a 	simple
 form�
such as a linear combination of some simple basis functions fl�t��

��t� �
kX
l��

alfl�t�� ���

�

where the al are unknown coe�cients which have to be estimated as well� In three dimen�
sions� it is usual to consider quadratic drifts �����

��x� y� z� � a�  a�x a
y  a�z  a�x
�  a�xy  a
xz  a�y

�  a�yz  a��z
�� ���
��

The unknowns ai now become part of the Kriging system� and the unbias condition is�

E�R�t�� L�t�� �
kX
l��

al

�
fl�t��

nX
i��


ifl�ti�

�
� �� ���
��

The following equations are a su�cient condition for the above expression to vanish�

nX
i��


ifl�ti� � fl�t�� l � �� � � � � k� ���
��
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This constraint is k�dimensional� as opposed to the ��dimensional constraint of Equation
���� Hence to solve the variational problem we now have to introduce k Lagrange multipliers
��� � � � � �k� This leads to the following equations �cf� Equation �����

nX
j��


jC�tj � ti��
kX
l��

�lfl�ti� � C�t � ti�� i � �� � � � � n� ���
��

As before� these equations can be written as a linear system�

M


 � b�t�� ���
��

The Kriging matrix is now given by�

M �

�
BBBBBBBBBBB�

C�	� � � � C�t� � tn� � f��t�� � � � fk�t��
���

� � �
���

���
���

���
C�tn � t�� � � � C�	� � f��tn� � � � fk�tn�

� � � � � � � � � � �
f��t�� � � � f��tn� � � � � � �
���

���
���

���
� � �

���
fk�t�� � � � fk�tn� � � � � � �

�
CCCCCCCCCCCA
� ���
��

and the vector b�t� is equal to

�C�t� t��� � � � � C�t� tn�� �� f��t�� � � � � fk�t��
t� ���
��

while the vector of unknowns is now�




 � �
�� � � � � 
n��������� � � � ���k�t� ������

As in the constant mean case� the matrixM is symmetric� In order for the system to have
a unique solution� we must add the constraint that the basis functions fl�t� are linearly
independent on the set of the n data points ti ����� Using the same argument as before we
can prove that such a system has to be solved at most once per frame�

Other extensions of the Kriging scheme are mentioned in ����� If the set of data points
gets too large� it is possible to solve several Kriging systems on subsets of the data� and
then combine the results to obtain a single estimator� This can however make the estimator
discontinuous ����� When the random �eld itself is vector valued �as in modelling wind
for example� then it is possible to estimate each component at the same time� taking into
account the cross�correlations between the components� The latter estimation procedure is
referred to as coKriging� The uncertainty at the data locations can also be incorporated
into the Kriging scheme �����

��� Small Scale Detail

����� Random Functions

We shall model the small scale detail by a random �eld R�t� with given second�order
statistics� In the spirit of Lewis� work �
�� we want a model�directed synthesis function
W �t� that approximates the desired random �eld� More precisely� we want to be able
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to evaluate the function at arbitrary locations in space� as opposed to random functions
generated by the spectral methods discussed in the previous chapter� that have values which
are de�ned only on a regular grid� The location of evaluation should be determined by the
model and not by the noise synthesis technique� For example� we may want to evaluate the
random function only near the boundary of the global smooth model� Moreover we want
the evaluation of the function to be independent of previous calculations which is not the
case� for example� in stochastic subdivision� This allows us to evaluate the random �eld
at di�erent locations simultaneously� and hence permits a straightforward synthesis of the
model in parallel� Typically the function W �t� is constructed by summing more elementary
random functions at di�erent scales �frequencies��

����� Spectral Sums

As stated in Chapter 
� random �elds can be arbitrarily approximated closely by sums
of simple random functions �cf� Equation 
����� This is the basic idea behind various
spectral sum random functions� Hence the spectral density function is used to specify the
second�order statistics of the random �eld� The random function W �t� is then given by�

W �t� �
NmaxX
i�Nmin

AiWi�t�� ������

In other terms� W is a summation of band�limited random functions Wi� Each of these
functions has a very narrow spectrum and ideally we would like all of these spectra to be
mutually disjointed� The Ai together model the spectral density function� i�e��

S�
� � Ai ai � 
 � bi ����
�

for all frequencies 
 in the spectrum �ai� bi� of Wi� that is in a neighbourhood of 
i� The
bounds of the summation Nmin and Nmax determine the 	quality
 of the random function�
The more terms we include the better the function will approximate the random �eld� but
the computation costs will increase as well� Thus in practice the values of these bounds are
a tradeo� between image quality and e�ciency�

����� Perlin	s Noise

One of the most popular classes of random functions used in computer graphics is that
introduced in ���� by Perlin� An approximation of white noise N�t� is used as the basic
random function from which more complex functions are built� The function N�t� is an
interpolator of an ensemble of uncorrelated random values given on an integer lattice� Sev�
eral possible interpolation schemes are discussed in �
��� The interpolator has the e�ect of
a low�pass �lter� hence the function N�t� is nearly band limited� Perlin�s function is a sum
of scaled versions of this basic noise function�

W �t� �
NmaxX
i�Nmin

�


i
N�
it�� ������

Perlin claims that this is an approximation of a fractal with spectral exponent � � ��
Saupe in ���� on the other hand empirically determines the exponent to be � � �� The
problem with this function lies in the spectra of the scaled versions of N � The N�
it� are
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not mutually disjointed since they all include the lower frequencies because of the 	low pass�
e�ect of the interpolation �
��� If the resolution of the image is r� then safe choices for the
bounds of the sum are Nmin � log���r�� � and Nmax � log�r�  �� Therefore the number
of terms in the sum should be approximately 
 log�r��

����� Gardner	s Texture

In order to render his clouds� Gardner introduces the following texture functions �����

W �x� y� z� � k
nX
i��

Fi�x� y� z�
nX
i��

Fi�y� x� z� ������

where the Fi are de�ned by

Fi�u� v� z� � Ci sin�
iu ���
� sin�
i��v�  � sin�
iz�
��� ������

The Ci are coe�cients� and the 
i are characteristic frequencies� Gardner achieves 	realistic
looking
 pictures by choosing the following values for the Ci and 
i�

Ci �

�
�p



�i
C� ������


i � 

i
�� ������

Gardner claims that these values produce a ��f fractional noise� However� a more careful
analysis shows that the spectral density function is more complicated� The series expansion
of the functions Fi is actually �discarding the z argument� ����

Fi�u� v� �
�X
n��

Jn���
��sin�

i��
��
u nv��  ����n sin�
i��
��
u� nv���� ������

Hence Gardner�s function is an approximation of ��f fractional noise only when u � kv�
for any integer k� Note that this function has no random component and the apparent
randomness comes entirely from the coupling of the phases in the functions Fi�

����� The Weierstrass
Mandelbrot Function

A more rigorous approximation of a fractal is given by theWeierstrass�Mandelbrot function�
This is a generalization of the 	nowhere di�erentiable but everywhere continuous
 function
of Weierstrass� An fBm with fractal parameter H is approximated by a superposition of
sinusoids with geometrically spaced frequencies �
���

W �t� �
��X

n���

rHn cos�r�nt  �n� ������

where the �n are independent and uniformly distributed over ��� 
�� and r is a parameter
referred to as the lacunarity parameter ����� Berry and Lewis in ��� show that the statistics
of this random function closely approximate an fBm� Because the sum includes terms for
arbitrarily large and small frequencies� the function has no characteristic scale� As for
Perlin�s noise function� only approximately 
 log�r� terms have to be considered for visually
	good
 results� This is why the Weierstrass�Mandelbrot function is preferred to a �discrete�
Fourier summation which contains the order of r terms� The storage costs are thus clearly
lower in general� The use of a periodic function other than cos�x�� such as the triangle
function� give functions which are visually similar using the same number of terms�
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����� Superposition of One
Dimensional Functions

Ausloos and Berman in �
� generalize the Weierstrass�Mandelbrot function to higher dimen�
sions� The most straightforward generalization is to replace the one�dimensional argument
t by the norm of the multi�dimensional argument t�

W �t� � W �ktk�� ������

However� this does not provide a function that approximates an fBm �
�� and because the
function is constant on circles �spheres� of a given radius� this produces images which are too
regular� Another approach is to consider a summation of terms of the form cos�x� cos�y��
This results in strong directional artifacts and is unsuited for random functions �
��� Instead�
Ausloos and Berman propose the following generalization to two dimensions�

W �x� y� �
MX

m��

AmWm�amx bmy� ������

where the Wm are one�dimensional Weierstrass�Mandelbrot functions and �am� bm� spec�
ify a direction� The resulting function Wm�amx  bmy� is thus a ridge�like surface� i�e� a
one�dimensional signal dragged along a given direction� Furthermore they show that this
function is equivalent to Mandelbrot�s construction of multi�dimensional fBms �
��� This
approach can be generalized to other random functions� Let X��t�� � � � � XM�t� be an ensem�
ble of M one�dimensional random functions with given second�order statistics� Therefore a
two�dimensional random �eld can be de�ned by�

W �x� y� �
MX
m��

AmXm�amx bmy�� ����
�

The one�dimensional random functions can be generated� for example� by spectral methods
using the spectral density function as a modelling tool� Anjyo�s random functions in ��� are
very close to this formulation� The second�order statistics of W �x� y� can be determined
from the statistics of the one�dimensional functions� However� it is not clear how to choose
the statistics of the one�dimensional functions to get the desired second�order statistics of
W �x� y�� Hence the function W �x� y� is not directly modelled by its second�order statistics�
but instead by its functional relation to the functions Xi�

Nothing stops us from generalizing this approach to three�dimensional random �elds�
For example� the ��D function can be modelled as a superposition of one�dimensional signals
in a particular direction� or as a superposition of two�dimensional signals� or a blend of both�

����� Sparse Convolution

In Section � of Chapter 
 we reviewed how to generate a random �eld by �ltering a 	simple

random �eld such as white noise� Lewis in �
�� considers another canonical random �eld� the
Poisson noise process� This random �eld P �t� consists of a sum of impulses of uncorrelated
intensity distributed at uncorrelated locations in space�

P �t� �
NX
i��

ai��t� ti�� ������
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Convolving this �eld with a kernel h�t� synthesizes the following random function�

W �t� �
NX
i��

aih�t � ti�� ������

As the spectral density of the Poisson process P �t� is clearly constant� the spectral density
of the resulting function W �t� is equal to the square root of the spectral density of the
convolution kernel �see Equation 
����� The advantage of this approach is that the quality
of the noise can be controlled by varying the number of impulses ti� Lewis furthermore
discusses several techniques to speed up the computation of this function by using lookup
tables for the kernel h�t��

��� Stochastic Kriging

The above two models can be combined in the Kriging procedure� This technique was
�rst suggested by Journel in ���� under the name of conditional simulation� The procedure
has been applied to other �elds thereafter by Delhomme in the Hydrosciences ���� and by
Hewett et al� in Petroleum Engineering ���� �����

The idea behind stochastic Kriging is very simple� If R�t� is the random �eld we want
to simulate� and "R�t� is the estimator obtained from the Kriging system� then we can write�

R�t� � "R�t�  
	
R�t�� "R�t�



� ������

In other words the unknown random �eld is the sum of the Kriging estimate and the Kriging
error� Unfortunately the Kriging error remains unknown because it involves the function
R�t�� The solution proposed by Journel is to consider any known realization S�t� of a
random �eld independent of R�t� with the same covariance as the unknown random �eld
R�t�� Since the random �eld S�t� is known� we can calculate the Kriging estimate "S�t�
which interpolates S�t� at the user�supplied data locations� We now consider the function�

R��t� � "R�t�  
	
S�t�� "S�t�



� ������

In the above expression all terms are known� In practice� the function S�t� can be calculated
by using any of the techniques mentioned in the previous section� It can be shown that
the second�order statistics of the function R��t� are indistinguishable from those of the
unknown random �eld R�t� ����� In reference to the global scale� only one Kriging system
has to be solved� However� we have to add the value of the function S�t� evaluated at the
data locations to the data constraints� More explicitly� the previous data constraints �ti� di�
become �ti� di�S�ti��� Let us use K�t� to denote the estimator obtained from this system�
Then our �nal function is given by�

R�t� � K�t�  S�t�� ������

Hence� this method is not more complicated than the two�scale model previously presented�
However the method has certain drawbacks� Most importantly the second�order statistics
of the global shape and the small�scale detail have to be identical� This works when one
is dealing with fractals which have no characteristic scale ���� ����� In computer graphics�
however� we can sacri�ce rigour for modelling power by allowing the small scale detail
function S�t� to have any second�order statistics� Furthermore we can add a parameter 

which controls the amount of small scale noise added�

R�t� � K�t�  
S�t�� ������
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��� Possible Extensions

In this section we will discuss possible extensions of the model to more than two scales� Let
us assume that we want L di�erent scales� Then� the phenomenon will be modelled by a
random �eld given by a sum of random �elds Rl at the di�erent scales�

R�t� �
LX
l��

Rl�t�� ������

Each random �eld is speci�ed by its second�order statistics and �for some levels� by user�
supplied data� The user thus has control over a wide range of scales� It is however unclear
how the user would specify this data� One possibility is a top�down design process� At �rst
the user speci�es the shape of the the largest scale by providing a set of data values� He or
she then views a display of the interpolated shape �obtained by the Kriging procedure�� and
starts to work on the next scale level by specifying re�nements of the previously�computed
shape� From these re�nements� the function R� is calculated� Of course the statistics of R�

should not interfere with those of R�� After this step the user views the sum of both �elds
and starts re�ning it for the next scale level to produce R
 and so on� At each level a certain
amount of noise can be added to add more complexity to the model� This is generated in
the same way as the small�scale detail of the two�scale model is generated by providing a
random function Wl at each level� with speci�ed second�order statistics�

At present it is still unclear how this design process can be formalized� Similar multi�
scale models have already been developed in other �elds� however� In low�level vision�
Szeliski ���� presents several models to separate an image into di�erent scales of descrip�
tion� The techniques he uses cost too much in memory requirements for three�dimensional
phenomena� In image compression� Burt and Adelson ��� present a way to compress images
more e�ciently by building a multi�scale representation of the image� This approach has
many attractive features which make it a candidate for a multiple�scale model in computer
graphics� A similar approach has been proposed in computer graphics by Williams ��
� to
encode a texture at di�erent scales�

A formalization of the procedure might be in terms of a hierarchy of Kriging systems
at each level� The technical details remain to be worked out� however� Furthermore� as
the distances between the data points decrease at each level� one has to be careful about
numerical instabilities which may arise� Another di�culty is the increase in the number of
data points at each level� This could be resolved by solving several Kriging systems and
then combining the resulting estimators�
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Chapter �

Application of the Model to

Clouds

I truly do want to know how to describe clouds� But to say there�s

a piece over here with that much density� and next to it a piece

with this much density � to accumulate that much detailed

information� I think is wrong� It�s certainly not how a human being

perceives those things� and it�s not how an artist perceives them�

Mitchell Feigenbaum

In this chapter we will provide a speci�c example of application of our model to nat�
ural phenomena� the modelling of clouds� The previous chapters dealt primarily with the
modelling of phenomena� in this chapter we will consider the rendering process as well�

Clouds are a typical example of partially translucent phenomena� As well� the visual
simulation of clouds is important in many applications� One such application is �ight�
simulation� We will model clouds as an ellipsoidal random �eld with two characteristic
scales� In the next section we will review some visual properties and terminology of clouds�
In the subsequent sections we will discuss various rendering techniques� We will begin with
a brief review of the theory of radiative transfer� which is the physical theory of how light
is distributed within a cloud� Several simple models will then be reviewed� A section will
be devoted to the ray�tracing of the global shape� which is similar to ray�tracing blobbies�

��� Observed Properties of Clouds

A vast amount of literature deals with the visual properties of clouds� This research was
initiated by the work of the British pharmacist Luke Howard in ����� Howard classi�ed
clouds into four major types� cumulus �cauli�ower type clouds� which have vertical devel�
opment�� stratus �clouds in �at appearing layers�� cirrus ��brous or hair�like�� and nimbus

�rain clouds�� Of course� some real clouds are hybrids� such as the cumulo�nimbus clouds
which can be observed during thunder�storms�

Basically� cloud phenomena have three distinct scales ��
�� the masoscale describes
clouds of the range of ���� km and up �the cloud patterns viewed from a satellite for
example�� the mesoscale includes clouds ranging from a few kilometres to several hundred
kilometres� In this range are the clouds listed in Howard�s taxonomy� The smallest scale is
the microscale which describes cloud phenomena on a scale smaller than � km �for example
the cloud 	pu�s
� the turrets on cumulus clouds and other small scale irregularities��

Recently Cahalan ���� has proposed a multi�scale fractal model to simulate clouds� The
model is used to recover the density distribution of clouds from experimental data� He

��
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considers a two�scale model� The large scale models the distribution of isolated clouds
within cloud clusters� The small scale describes the characteristics of an isolated cloud�
Each scale is modelled as an fBm with a spectral exponent � that is estimated from the
experimental data obtained by satellites�

��� The Scattering Equation

The rendering of a cloud as an ensemble of particles can be solved �in theory� by using the
equations of radiative transfer �

�� The quantity calculated in a scattering problem is the
radiance I�x� s� at a given position x emitted in the direction given by the solid angle s�
The phase function p�x� s� s�� characterizes the scattering in direction s of radiance arriving
from the direction s� at location x� The phase function is normalized by�Z

ks�k��
p�x� s� s��ds� � ��� �����

The total amount of radiance emanating from a particular direction s at a location x is
given by the source function�

J�x� s� �
��x�

��

Z
ks�k��

p�x� s� s��I�x� s�� ds�  Js�x� s�� ���
�

The function ��x� is the albedo of the cloud at location x� The function Js�x� s� is a term
which accounts for internal and#or external sources of radiation� The radiance I can be
calculated from the scattering equation �

��

s � rxI�x� s� � ��e�x��I�x� s�� J�x� s�� �����

with some boundary conditions� The function �e is the extinction coe�cient and is equal
to

�e�x� � �a�x�  �s�x� �����

where �a is the absorption coe�cient and �s is the scattering coe�cient� The scattering
equation states that the variation of the radiation in direction s is simply the di�erence
between the emitted radiance and the absorbed radiance� This equation can only be solved
in practice in particularly simple cases where the dimensionality of the radiance I is low�
ered� Furthermore� the radiance function �if calculated� provides too much information for
computer graphics� We are not interested in the intensity values of the centre of a cloud�
since we cannot see such points� In many cases it is assumed that the cloud is isotropic�
More precisely� if the phase function only depends on the angle � between the two directions
s and s��

p�x� s� s�� � p�x� cos��� �����

��� Low Albedo Approximation

Blinn ��� and Kajiya and Von Herzen �
�� present algorithms to ray�trace volume densities
with a low albedo� This means that multiple scattering within the cloud� i�e� particles
illuminating other particles of the cloud� are ignored� First the cloud is modelled as a
density map 	�x�� The phase function is then rewritten as�

p�x� cos�� � 	�x�p�cos��� �����
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Figure ���� Low Albedo Approximation

Assuming we consider only the radiance coming from the line �x�t�� y�t�� z�t��� then the
scattering equation with the low albedo approximation becomes�

d

dt
I�x�t�� y�t�� z�t�� � ��e	�x�t�� y�t�� z�t��I�x�t�� y�t�� z�t��� �����

This has solution of

I�t� � I�t�� exp

�
��e

Z t

t�

	�x���� y���� z���� d�

�
� �����

i�e�� a simple exponential decay� The algorithm to ray�trace clouds is based on this expo�
nential decay �
��� Let us assume that we have L light sources� We �rst consider a point
x�t� on the ray within the cloud� The amount of light reaching x�t� from a light source i is
then given by�

$i�t� � $i exp

�
��e

Z
	��� d�

�
� �����

The integral is over a line segment from x�t� to the location of light source i and $i is
the intensity of the light source� The particles on a portion dt of the ray contribute the
following amount to the �nal illumination value�

dIi � $i�t��s	�x�t��p�cos�i�t�� exp

�
��e

Z t

a

	�x���� d�

�
dt� ������

where �i�t� is the angle between the ray and the segment from x�t� to the light source i�
The �nal intensity I is then given by summing over all light sources and contributions dIi�

I �
LX
i��

Z b

a

dIi  Iback exp

�
��e

Z b

a

	�x�t�� dt

�
� ������



�� CHAPTER �� APPLICATION OF THE MODEL TO CLOUDS

The intensity Iback is the light coming from behind the cloud� The bounds of the integral a
and b are given by the intersection of the ray with a volume bounding the cloud� See Figure
��� for a better understanding of the terms in the above equation� As noted in �
�� the values
$i�t� can be interpolated from a precomputed table of values at discrete locations of space�
Blinn was able to solve the integrals involved analytically because of the simple geometry of
his clouds� In the general case� however� these integrals can become very expensive� Sakas
���� ray�traces density maps given as a voxel data base� The integrals are then evaluated
using voxel traversal algorithms� This method can also account for self�shadowing e�ects
which are especially important in the case of thick cumulus clouds by shooting additional
rays� However� as noted �
�� this can result in pictures which are overly obscured because
the self�scattering e�ect is neglected �due to the low albedo assumption��

��� The Rendering Algorithm

We will now introduce the rendering algorithm which takes advantage of the double�scale
model presented in this thesis� The rendering algorithm dealt with in the previous section
su�ers mainly from an inability to account for self�shadowing and self�scattering e�ects�
which are semi�global� In the following algorithm these e�ects are accounted for by using
the geometry of the global shape of the model� Furthermore� by having analytic expressions
for the density map we can write special code to solve the integrals� An analytic solution is
not possible because of the addition of noise� It is also possible to model the translucence
of the cloud by using a modi�cation of Gardner�s algorithm ����� The general outline of the
algorithm is as follows�

For each ray do
��� Calculate intersection point with isosurface of global shape
�
� If no intersection then next ray
��� Calculate normal at intersection point
��� Use normal to calculate self�shadowing
��� Determine brightness and translucence of the cloud

Next ray

In the next sections we will describe the intersection step ��� more carefully and give a
simple algorithm based on Gardner�s work for step ����

��� Ray Tracing Blobbies

The intersection step of a ray and a blobby will now be described in more detail� Rather
than use Blinn�s algorithm ���� we will use instead interval arithmetic �
��� Since we have
assumed that the random �eld de�ning the global shape is ellipsoidal� the estimator given
by the Kriging system will have the following form�

L�t� �
nX
i��

yiC��t� ti�
tQi�t� ti��� ����
�

The matrices Qi will be as de�ned in section 
�
�
� The blobby will then be de�ned as an
isosurface of this function�

L�t�� T � � ������
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where T is a given threshold�
When calculating the intersection of a ray R�t� and the blobby� �rst we transform the

ray to its canonical form
R�t� � ��� �� t� ������

To �nd the intersection we substitute R�t� into L�t� to get�

��t� �
nX
i��

yiC�ci  bi�t� zi�  ai�t � zi�
�� ������

where ai� bi and ci are given by the coe�cients of Qi and the components of the locations
ti� The intersection points of the ray with the blobby are given by the roots of the equation�

��t�� T � �� ������

To �nd these intersections we �rst compute a set of intervals� Each interval contains
exactly one root� This is done by interval arithmetic� Then a standard root �nder is applied
to each interval which is guaranteed to converge because the interval only contains a single
root� An example of such root �nding algorithm is the well�known Newton iteration� Now
we will describe how interval arithmetic is applied to this particular problem�

Interval arithmetic is an extension of standard arithmetic to intervals� In other words we
de�ne operations �such as addition and multiplication� on intervals� We make the following
de�nitions�

�a� b�  �c� d� � �a c� b d� ������

c�a� b� � �ca� cb� if c � � ������

c�a� b� � �cb� ca� if c � � ������

exp��a� b�� � �exp�a�� exp�b�� ���
��

More generally� for any non�decreasing function f�x� and non�increasing function g�x� we
must

f��a� b�� � �f�a�� f�b�� ���
��

g��a� b�� � �g�b�� g�a�� ���

�

In the case of non�monotonic functions the de�nition is less straightforward and we have to
know all the local extrema of the function in advance in order to identify the intervals on
which the function is monotonic� A speci�c example will be given later�

We are searching for intervals �t�� t�� such that T 	 ���t�� t��� �the interval contains a
root� and the derivative ����t�� t��� does not contain � �the function is monotonic in the
interval�� These two facts imply that the interval contains a single root� The following
algorithm starts with an initial interval �t�� t�� �provided for example by some bounding box
heuristics�� and then proceeds by recursively subdividing the interval in two� The intervals
are contained in the set I at the end of the algorithm� More explicitly�
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I �� 

miss �� TRUE
Algorithm Isolate��t�� t���

if T �	 ���t�� t��� then
return

if jt� � t�j � � then
I �� I � f�t�� t��g
miss �� FALSE

return
if � �	 ����t�� t��� then
if ���t��� T ����t��� T � � � then
I �� I � f�t�� t��g
miss �� FALSE

return
t� �� �t�  t���

Isolate��t�� t���
Isolate��t�� t���
return

end

We now consider an explicit example where the covariance function is Gaussian� i�e� of
the form�

C�t� � exp���t��� ���
��

From Equations ����� ���� and ����� we know how to calculate weighted sums of intervals�
More precisely� if we assume that the coe�cients yi are positive� then

���t�� t��� �
nX
i��

yifi��t�� t���� ���
��

Therefore we need only show how to compute the functions fi� which are given explicitly
by�

f�t� � fi�t� � exp����c b�t� zi�  a�t � zi�
��� ���
��

See Figure ��
 for a plot of this function� Let the interval to be evaluated be �t�� t��� If
f�t�� � f�t�� then we swap the values of t� and t�� The function has a unique maximum at
tmax � zi � b��
a�� Therefore if the interval �t�� t�� contains tmax� then we set the resulting
interval to�

�f�t��� f�tmax�� � �f�t��� f�c� b����a���� ���
��

If not� the function f�t� is monotonic between t� and t�� and we simply return�

�f�t��� f�t���� ���
��

The evaluation of the derivative ���t� is a bit more complicated� As above it is su�cient
to show the calculation only for a single term of the sum�

f ��t� � ���b 
a�t� zi��f�t� ���
��

See Figure ��� for a plot of this function� This function has a minimum and a maximum at
the following points�

t� � zi � b


a

 �p


a�
� ���
��
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Figure ��
� The Correlation Function

Figure ���� Derivative of the Correlation Function
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Then as before we check to see if the input interval contains any of the extrema� and we
return speci�c values accordingly�

A � f ��t��
B � f ��t��
if A � B then
swap the values of A and B

end if
if t� 	 �t�� t�� then
B � f ��t��

end if
if t� 	 �t�� t�� then
A � f ��t��

end if

The resulting interval is then given by �A�B�� A safety trick to avoid problems caused
by numerical imprecision is to make the resulting intervals slightly larger than given by the
above algorithms� for example by an amount ��

��� A Simple Illumination Model

In this section we will present an illumination model which is similar to Gardner�s textured
ellipsoids algorithm ����� We assume that we already have the nearest intersection point P
of the ray and the blobby� and the normal N at that point� From these values a 	classic

illumination value Iclassic can be calculated �for example using Phong�s model�� This value
will be used to account for the the brightness and the self�shadowing e�ects of the cloud�
The translucence is obtained from the small scale detail function W �t�� which is used as
a �solid� texture� The texture value is given by t � W �P �� This value is compared to a
threshold T which is a function of the distance d traversed by the ray through the cloud and
the cosine � of the angle between the viewing vector and the normal N � Both a threshold
T� at the 	boundary
 of the cloud �typically very high� and a threshold T� at the 	centre

of the cloud �typically very low� are de�ned� The threshold T is then interpolated from
these two values as follows�

T � T�  �T� � T�� exp���d��� ������

where � is a user speci�ed parameter which in�uences the 	fuzziness
 of the cloud�s 	edge
�
The �nal texture is then set to�

t� � max��� ��t� T �� ������

where � is some normalization function� which in our implementation was set to

��t� T � � �t � T ����� T �� ����
�

If Iback is the illumination coming from behind the cloud� then the �nal illumination is given
by

I � t�Iclassic  ��� t�� exp���d���Iback� ������

Note that this illumination model is not based on the physical equations of radiative
transfer theory� It was designed simply to give visually good results�
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Results

In this chapter we will demonstrate the power of our two�scale model with some actual
examples� The next section will describe the di�erent options in the modelling process
using our model� The second section will present the actual implementation of the simple
illumination model for the three�dimensional cloud model�

��� The Modelling Process

For the sake of clarity we will only consider two�dimensional phenomena in this section�
The images can� for example� represent thin �plane parallel� cloud layers� The goal in this
section is not to portray realistic pictures� but rather to exhibit the �exibility of our model�

����� Speci�cation of the Global Shape

In the �rst stage of the modelling process the user speci�es a set of values at data points�
This way she or he roughly sketches the shape of the phenomenon� Figure ��� shows a
set of values which are magni�ed for more clarity� The exact shape of the globally smooth
model now depends on the choice of the correlation function� We will now exhibit images
for di�erent correlation functions� First we consider the case of an isotropic Gaussian
correlation function�

	�x� y� � exp
	
���x�  y��



� �����

The parameter � determines the range of the correlation� high values mean almost no
correlation between the data points and low values mean a high correlation between the
points� Figures ���� ��
 and ��� show images synthesized for di�erent values of � along with
a plot of the corresponding correlation function� The isotropy of the correlation function is
clearly visible� To introduce anisotropies� the user can work with an ellipsoidal correlation
function by specifying a 	stretch
 or a 	squeeze
 along two directions �axes of the ellipse��
Figure ��� shows the result of stretching in the y�direction by two� The contour lines of the
corresponding plot are now clearly ellipses�

Further anisotropies can be introduced by using correlation functions which do not
depend on the distance x�  y� only� For example� we can study the e�ect of letting the
correlation oscillate along the y�direction� This can be achieved� for example� with the
following correlation function�

	�x� y� � exp
	
���x�  y��


 �


��  cos��y�� � ���
�

��
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Figure ���� Isotropic Gaussian Correlation Function with � � �

Figure ��
� Isotropic Gaussian Correlation Function with � � ���
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Figure ���� Isotropic Gaussian Correlation Function with � � ����

Figure ���� Ellipsoidal Gaussian Correlation Function with � � ����
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Figure ���� Oscillated Gaussian Correlation Function with � � ��� and � � �

Figure ���� Oscillated Gaussian Correlation Function with � � ���� and � � 




���� THE MODELLING PROCESS ��

Figure ���� Singular Correlation Function with a � ���

The e�ect of parameter � is the same� and the second parameter � determines the size of
the oscillations� The in�uence of these parameters is illustrated by Figures ��� and ���� We
can observe the strong anisotropies from the plots of the correlation function�

The Gaussian is not the only possible correlation function� In general we want functions
which decay with distance� and which are nearly zero after some given distance� Another
function having these properties is the inverse power function�

	�x� y� �
�

�  �x�  y��a
� �����

Figures ��� and ��� show resulting images� For low values of the parameter a� the radius
of in�uence seems to be too big and there are noticeable singularities at the data points�
For large values of a the functions drops o� too rapidly� and we get a result similar to the
image of Figure ����

In all the examples� the phenomenon was constrained to take the same value of ��� at the
data points� Hence theoretically the 	best
 interpolator must be the constant function equal
to ���� This results in a totally blank image� One possible way to force the phenomenon
to be zero 	far�away
 from the data points is to constrain the phenomenon to be zero at a
unique data location distant from the data�

����� Speci�cation of the Small Scale Detail

As stated in Chapter � the user has to specify the small scale detail by the second�order
statistics of a random function� In most cases these second�order statistics are estimated
from actual samples of the phenomenon� However� he or she has the freedom to create any
valid correlation or spectral density function� Figure ��� shows an image of a phenomenon
where small scale has been added using the stochastic Kriging technique described in Section
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Figure ���� Singular Gaussian Correlation Function with a � 
��

Figure ���� Addition of the Small�Scale Detail using Stochastic Kriging
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Figure ����� 
�D Weierstrass�Mandelbrot function with M � � and �

� of Chapter �� The small�scale noise for that image is a random function having an isotropic
Markovian correlation function�

	�x� y� � exp

�
��
q
x�  y�

�
� �����

The global shape is constrained by the same data constraints of the previous section� with
an isotropic Gaussian correlation function with � � ����� This small�scale was synthesized
using an FFT spectral model described in Section ���� The problem with the stochastic
Kriging approach is that small�scale detail may also appear far away from the boundary of
the global shape of the phenomenon� One solution is to let this small�scale decay with the
distance from the global shape� Techniques similar to those described in the simple illumi�
nation model of the previous chapter could be used� In the next section more convincing
results involving the small�scale detail will be presented�

Several of the random functions discussed in Section ��� have been tried� Examples
of random samples using Perlin�s function can be found in many references in computer
graphics �e�g� in ������ The two�dimensional Weierstrass�Mandelbrot function� however�
has not received much attention in computer graphics� Figures ���� and ���� show four
samples of a fractal random �eld with di�erent values of M � Recall that M is the number
of one�dimensional Weierstrass�Mandelbrot functions which are superposed� For the �rst
two images �i�e� M � � and ��� the directional artifacts �ridges� are clearly visible� Even in
the last image with M � �
 some artifacts are still visible� It seems that unless one wants
these strong directionalities� the multi�dimensional Weierstrass�Mandelbrot function needs
too many superpositions to generate artifact�free pictures�
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Figure ����� 
�D Weierstrass�Mandelbrot function with M � �� and �


��� Three�Dimensional Clouds

In this section we will present results of our model applied to the simulation of three�
dimensional clouds� The illumination model used was described in the previous chapter�
This illumination model has been directly implemented in a standard ray�tracer� i�e Optik�
a ray�tracer developed at the University of Toronto by Amanatides and Woo� The global
shape is given by the set of data points and coe�cients of the Kriging estimator� This
supposes that the modelling was done in a prior stage� in other words another program
reads the input data supplied by the user and calculates the coe�cients of the Kriging
estimate and stores them in a format understandable by Optik�

Figures ���
� ���� and ���� are images of the global shape with di�erent correlation
functions� The user supplied data is represented by small red spheres� To give a depth clue
the spheres gradually become faded the farther they are from the viewer� These images are
reminiscent of Blinn�s blobbies� The isotropic Gaussian correlation function is used� The
details of the rendering of these images was covered in Section ����

The addition of small�scale detail using the simple illumination model is illustrated in
Figures ����� ����� ���� and ����� We used Perlin�s function to generate the small�scale
detail� This is equivalent to assuming that the small�scale is 	fractal�like
 �see Section
������� The noticeable di�erences in the four images come from di�erent scaling values of
Perlin�s noise�

We will now experiment with an elliptical correlation function for the global shape
model� Figure ���� shows an example of the global shape using such a correlation function�
The shape of the ellipsoids varies as a function of the height of the cloud� The ellipsoids
are 	�atter
 near the bottom of the cloud� This permits us to simulate the behaviour
of cumulus type clouds observed in the sky� Figure ��
� shows the result of adding the
small�scale detail to this model�
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Figure ���
� Image of global shape �

Figure ����� Image of global shape 
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Figure ����� Image of global shape �

Figure ����� Addition of small�scale detail �
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Figure ����� Addition of small scale detail 


Figure ����� Addition of small�scale detail �
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Figure ����� Addition of small�scale detail �

Figure ����� Global shape with elliptical correlation function
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Figure ��
�� Addition of small�scale detail to previous elliptical model

In the above images certain artifacts caused by the simplicity of the illumination model
are visible� For example� the fuzzy regions at the boundary of the cloud are all very small�
Some clouds� however� show big fuzzy 	wisps
� typically at the tops of clouds� These e�ects
can be modelled by adding more parameters to our simple illuminationmodel� or to use more
sophisticated volume rendering approaches based on the algorithm presented in Section ����
In both illumination models� however� the availability of the global shape is crucial in
the simulation of semi�global illumination e�ects such as self�shadowing� This means that
the user could specify one of the possible rendering techniques necessary to determine the
translucence of the cloud at the intersection point� This choice is then a trade�o� between
image quality and computation time� For example� the simple illumination model could be
used to 	preview
 the scene for modelling purposes�

All pictures have a resolution of ��
� ��
 pixels and were rendered on Iris �D worksta�
tions� The rendering of the global shape took approximately 
� to �� minutes� With the
addition of the small�scale detail rendering times took approximately one hour� Note that
there has been no attempt to optimize the code� as clarity and correctness were our �rst
concerns� To solve the Kriging system a simple LR decomposition routine of linpack was
used�
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Conclusion

The main contribution of this thesis was to introduce a new stochastic model to computer
graphics� Unlike previous models� it overcomes the high storage requirements in the case of
three�dimensional phenomena without sacri�cing user control� This is achieved by consid�
ering a model that operates on two or more scales of visual detail�

At the macroscopic level� the shape is given as an interpolator of user supplied data�
Since we interpret the interpolation as an estimation problem� the interpolator is controlled
by a correlation measure� By necessitating that the estimator is unbiased and has minimal
variance� an optimal estimator is calculated� The technique used is called Kriging� This
technique requires the solution of one linear system with a size equal to the number of data
constraints� This estimator has low storage requirements because it is a weighted sum of the
correlation measure at di�erent locations� At the microscopic level� the small�scale detail
is modelled by a solid texture� This texture is modelled by a random function which can
be evaluated anywhere in ��space and is given by a small number of coe�cients� A good
example is Perlin�s noise function ����� Our model has low storage requirements because of
the simple form of the estimator and the choice of small�scale random function� In addition
our model allows the user to have control over the shape of the phenomenon as a result of
the interpolation at the global scale�

The feasibility of our model was demonstrated by applying it to the simulation of clouds�
Clouds are modelled as density maps� At the rendering level we took full advantage of
the separation of scales� The global shape is used to calculate semi�global illumination
e�ects� such as self�shadowing� We considered two di�erent rendering algorithms to add the
translucence� The �rst algorithm generalized the heuristics �rst introduced by Gardner �����
It has the advantage of being simple and suitable for implementation in a standard renderer�
The second algorithm is more expensive because it uses volume rendering techniques�

The �rst algorithm was implemented and the results that were shown in chapter �
demonstrate that our model is well suited for the rendering of three�dimensional partially�
translucent phenomena such as clouds�

The extension of the model from two�scales to more scales of visual detail was mentioned
in Chapter �� however the procedure still remains to be formalized in a rigorous mathemati�
cal framework� To achieve this� certain models from low�level vision and image compression
could be used� The technique of stochastic Kriging as presented in chapter � needs certain
modi�cations to be more useful in computer graphics� The addition of noise should only be
concentrated near the global shape and the use of di�erent correlation measures at di�erent
scales should be allowed�

��
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The rendering of the model can be improved in di�erent ways� For example� heuristic
rendering algorithms other than Gardner�s could be designed� As well� although the more
expensive volume rendering technique was described in detail in Chapter �� it remains to
be implemented to assess its true advantages�

An interesting area of future research might be to apply the above model to other
natural phenomena� Of special interest would be those which have not yet been simulated
by previous models because of high storage requirements� The �rst step would be to apply
the model to partially�translucent phenomena di�erent from clouds� An example would
be �re� A more ambitious goal would be to try to model water or other �uids using the
same model� In particular it would be exciting to incorporate the dimension of time in our
random functions� This would permit us to simulate complex dynamic behaviour which
is presently beyond purely deterministic models� Furthermore� the temporal correlation
function could be used to speed up the rendering of subsequent frames in an animation�
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