A Multi-Scale Stochastic Model for
Computer Graphics

Jos Stam

Department of Computer Science
University of Toronto
Toronto, Ontario, Canada

A Thesis submitted in conformity with the requirements
for the Degree of Master of Science in the

University of Toronto
o (© Jos Stam 1991



Abstract

Stochastic modelling has been successfully used in computer graphics to model a wide
array of natural phenomena. In modelling three-dimensional fuzzy or partially translucent
phenomena, however, many approaches are hampered by high memory and computation
requirements, and by a general lack of user control. The main contribution of this thesis
is the introduction of a general stochastic modelling primitive that operates on two or
more scales of visual detail. At the macroscopic level, the general shape of the model is
constrained by an ellipsoidal correlation function that controls the interpolation of user-
supplied data values. A technique called Kriging is used to perform this interpolation.
The microscopic level permits the addition of noise, which allows one to add interesting
visual textural detail and translucency. A wide variety of noise-synthesis techniques can
be employed in our model. The main advantages of the model over existing ones are low
storage requirements and the use of geometric primitives that are amenable to rendering in
traditional environments.

The basic theory of random fields, which underlies our model, and previous related
models in computer graphics are thoroughly reviewed. As a case study we apply our model
to the simulation of clouds. The rendering algorithm developed takes full advantage of the
separation of scales inherent in our model. Two alternative rendering algorithms will be
described to render clouds. Possible extensions to more scales and applications to other
phenomena are also discussed.



Acknowledgements

Now that the dust has settled and the punctuation has been corrected, I want to thank
a few people. Then I'll clean my apartment and eat a really balanced meal for the first time
in a year and a half.

My thanks first to my supervisor Eugene for putting up with me at all stages of my
thesis. He encouraged me when I doubted my work and helped me keep my sense of humour.
My thanks also to Demetri whose “Visual Modelling” course reawakened my interest in
stochastic modelling. Thanks also for pointing me to the Kriging technique and for being
my second reader. Thanks to everyone in the graphics lab for providing two fundamental
details: a good working environment and an unlimited supply of caffeine.

Thanks to all my new friends in Toronto without whom this thesis would have been
finished suspiciously early.



Contents

1 Introduction

1.1

Thesis Overview

2 Stochastic Modelling

2.1

2.2

2.3

3.1
3.2
3.3
3.4
3.5
3.6

4 The
4.1
4.2

4.3

Modelling in Computer Graphics . .
2.1.1  Smooth Surfaces . . ... ..
2.1.2  Physically Based Modelling .
2.1.3 Nondeterminism .. ... ..
Probability Theory Review . . . ..
2.2.1 Random Variables . . .. ..
2.2.2 Random Fields . .. ... ..
2.2.3 Correlation Measures . . . . .
2.2.4 Isotropic Random Fields . . .
2.2.5  Spectral Representation of a Random Field
2.2.6  Transforming Random Fields
Random Fractals . . . ... ... ..
2.3.1 What is a Fractal 7. . . . ..

2.3.2  Spectral Analysis of a Fractal

Previous Work

Spectral Models
Stochastic Displacement
Generalized Stochastic Subdivision .
Constrained Fractals
Textured Ellipsoids
Thick Textures

Model

Separation of Scales
The Global Shape
4.2.1 Smooth Estimation. . . . . .
4.2.2 Kriging
4.2.3 Extensions
Small Scale Detail
4.3.1 Random Functions
4.3.2  Spectral Sums
4.3.3 Perlin’s Noise
4.3.4 Gardner’s Texture

ii

[N

CU OU = e = W W W

e T e T e T
52 B Gieh) SIUCIEN o e B @)

17
17
18
19
19
19
20



4.3.5 The Weierstrass-Mandelbrot Function
4.3.6  Superposition of One-Dimensional Functions
4.3.7 Sparse Convolution . . . . . . ... .. oL
4.4 Stochastic Kriging . . . . . . . . ..
4.5 Possible Extensions . . . . . . . . ... e e

5 Application of the Model to Clouds

5.1 Observed Properties of Clouds

5.2 The Scattering Equation . . . . . .. ... . L o oL
5.3 Low Albedo Approximation . . . . . .. . . .. ... oo
5.4 The Rendering Algorithm . . . . .. ... ... .. . oL L.
5.5 Ray Tracing Blobbies . . . .. ... .. L o oL

5.6 A Simple lllumination Model

6 Results

6.1 The Modelling Process . . . . . . . . ... . L L
6.1.1 Specification of the Global Shape
6.1.2  Specification of the Small Scale Detail

6.2 Three-Dimensional Clouds . . . . . . .. . ... . ...

7 Conclusion

iii

33
33
34
34
36
36
40

41
41
41
45
47

55



List of Figures

2.1
2.2

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

White noise . . . . . . .o 6
Two correlated random fields . . . . .. .. ... o oo 7
Low Albedo Approximation . . . . . . . . . ... oo 35
The Correlation Function . . . . . . ... ... 0 oL 39
Derivative of the Correlation Function . . . . . . .. ... ... ... .. 39
Isotropic Gaussian Correlation Function witha =5 . . . ... .. ... .. 42
Isotropic Gaussian Correlation Function with a = 0.1 . . . . . .. ... .. 42
Isotropic Gaussian Correlation Function with « =0.01 . . . . . .. ... .. 43
Ellipsoidal Gaussian Correlation Function with a« =0.06 . . . . . . ... .. 43
Oscillated Gaussian Correlation Function with a =0.1and =4 . . . . .. 44
Oscillated Gaussian Correlation Function with o = 0.0 and g =2 . . . .. 44
Singular Correlation Function witha =05 . . ... ... ... ... .... 45
Singular Gaussian Correlation Function witha =25 . .. ... .. ... .. 46
Addition of the Small-Scale Detail using Stochastic Kriging . . . . ... .. 46
2-D Weierstrass-Mandelbrot function with M =4 and 8 . ... .. ... .. 47
2-D Weierstrass-Mandelbrot function with M =16 and 32 . . . . . . .. .. 48
Image of global shape 1 . . . .. .. .. .. .. 49
Image of global shape 2 . . . . . .. .. .. L L o 49
Image of global shape 3 . . . . . .. .. .. L o 50
Addition of small-scale detail 1 . . . . .. ... ... o L. 50
Addition of small scale detail 2 . . . . .. ... oo oo 51
Addition of small-scale detail 3 . . . . .. ... .. oo oo 51
Addition of small-scale detail 4 . . . . .. ... .. o oo 52
Global shape with elliptical correlation function . . . . . . . ... ... ... 52
Addition of small-scale detail to previous elliptical model . . . . . ... .. 53

v



Chapter 1

Introduction

The visual simulation of natural phenomena is an active research area in computer graphics.
Unlike other applied sciences we are not interested in highly accurate models, which are
essential for prediction and analysis. In computer graphics our goal is two-fold: (i) the
model should capture the visual characteristics of the phenomenon, and (ii) it should permit
control over the macroscopic features of the phenomenon. The first goal is part of the aim in
computer graphics to produce “photo-realistic” images. Realism isimportant in applications
such as flight simulators, and other applications in which a user should have the illusion of
being in a natural environment. The second goal is essential in design and animation. In
design, a user should be able to synthesize a particular form of the phenomenon he or she
has in mind. In animation, control is important to achieve coherence between subsequent
frames.

Many models have already been proposed in computer graphics which attempt to meet
these criteria. In modelling three-dimensional fuzzy or partially-translucent phenomena,
however, many approaches are hampered by high memory and computation requirements.
Examples of such phenomena include clouds, fire, mist, smoke, dust and various types of
solid (three-dimensional) textures.

The model presented in this thesis satisfies the two goals and overcomes the high memory
requirements for the aforementioned class of phenomena. One of the main characteristics
of our model is that it operates on two or more scales of visual detail. In order to grasp the
complexities inherent in most natural phenomena, our model uses non-determinism in an
essential way. A phenomenon is modelled as a random field whose second-order statistics
may differ at different scales (unlike, for example, fractals).

In this thesis we will focus mainly on two-scale models. The first scale (macroscopic
level) models the global shape of the phenomenon; it is constrained by a correlation measure
that controls the interpolation of user supplied data values. We use a technique called
Kriging which was first developed in mining geostatistics to perform this interpolation. The
second scale (microscopic level) adds visual detail to the smooth global model. This scale is
modelled by a random function with specified second-order statistics (correlation measure
or spectral density function). The models at both scales have low storage requirements: for
the global shape the interpolator is a weighted sum of basis functions, and for the small
scale detail we only consider random function given by a small number of coefficients. For
a certain class of correlation measures our global shape interpolator is a generalization of
Blinn’s “blobbies” [5].

As a case study, we shall apply our model to simulate clouds. Clouds are interesting
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because of the wide variety of shapes and visual effects they exhibit. Two possible render-
ing techniques for clouds are presented in detail. The first algorithm is a generalization of
Gardner’s method to render clouds [13]. It has the advantage of being efficient and im-
plementable in a standard rendering software. The second approach uses volume-rendering
techniques and achieves greater realism at the cost of higher computation time. Both tech-
niques take advantage of the global shape information to simulate semi-global illumination
effects, such as self-shadowing.

1.1 Thesis Overview

The thesis is organized as follows. In Chapter 2 we review the basic theory of random fields
needed to understand the multi-scale model. We focus mainly on the second-order statistics
of a random field, as they are the key to the whole modelling process. The theory of linear
filters is briefly mentioned as it underlies most noise synthesis algorithms. At the end of
the chapter we describe one of the most popular random fields used in computer graphics:
random fractals.

In Chapter 3 most of the previously related models in computer graphics are presented
and discussed. For each approach, the ability to model three-dimensional fuzzy or partially-
translucent phenomena is discussed. Rendering issues are mentioned as well for each model.

In Chapter 4 we present our multi-scale stochastic model. We first give a general
overview of the model, and then present the two scales separately. For the global shape, the
theory of Kriging (which provides the interpolator) is reviewed in detail along with possible
extensions. This is followed by a description of several existing random functions to model
the small scale detail.

In Chapter 5 we present how our model can be applied to the simulation of clouds. Ren-
dering issues will be addressed in detail. More precisely, two different rendering techniques
will be presented: one simple heuristic technique which is a generalization of Gardner’s
work, and a more expensive algorithm based on volume rendering techniques.

In Chapter 6 we present several images synthesized using the model. The modelling
process is presented first. The different options available to the user are then illustrated
with concrete examples. Finally images of the rendering of three-dimensional clouds are
discussed.

In Chapter 7 we summarize and comment on the contributions of this thesis and mention
work in progress and possible directions of future research.



Chapter 2

Stochastic Modelling

2.1 Modelling in Computer Graphics

Computer graphics can be divided into two conceptual parts: modelling and rendering. In
the modelling phase a mathematical model of the scene is generated from a description
provided by a user. The rendering phase then takes this model as an input and generates a
two-dimensional representation suitable for display on a raster device. In practice, however,
both phases cannot be studied independently; of what use to computer graphics is a model
that cannot be rendered? Conversely, a renderer that cannot process any interesting models
is useless. Consequently, although this thesis is mainly concerned with the modelling of
natural phenomena, the rendering of the model will also be discussed in detail.

2.1.1 Smooth Surfaces

Mainly for commercial reasons, most of the research in modelling has been devoted to
geometric design. In the car industry, for example, computer graphics has revolutionized
the design process. Instead of drawing or building a physical model of a car by hand, it
is now possible to design substantial components of it using computer assisted systems.
This makes the whole design process faster and provides more freedom to the designer.
Most geometric design systems make use of spline surfaces, i.e. piecewise smooth surfaces.
The whole design process is then a succession of stretching and bending of an initially
flat piece of surface. In practice this is achieved by modifying the control points of the
spline. Furthermore these surfaces can be displayed using standard renderers, e.g., by
polygonalizing the surfaces. More generally, spline surfaces and related models turn out to
be very successful at modelling ‘man made’ smooth objects, hence their success in industry.
When dealing with natural phenomena, however, these models are often inappropriate.
Nature exhibits great visual complexity, especially at small scales. Hence the aforementioned
models are inappropriate for the simulation of natural phenomena. As an alternative the
user could specify the entire phenomenon by an enormous number of polygons. This is the
approach taken by Snyder and Barr in [36]. This approach is clearly not “user friendly”
and is limited by storage capacity. Furthermore, it does not takes advantage of the possible
regularities in the phenomenon.
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2.1.2 Physically Based Modelling

Recently, a lot of research has been devoted to physically based modelling [39]. In this
approach, the user does not specify the entire phenomenon, but rather provides external
forces and material properties of the objects. The physical model then calculates, based
on equations of classical mechanics, the position and shape of each object over time. This
model clearly has the advantage of being inherently dynamical. Hence it is very well suited
for certain animations. This approach, however, suffers from the limitations of classical
mechanics. For some phenomena, although the equations exist and are well understood,
physical simulation may be practically impossible. This is the essence of the so called
Science of Chaos [14]. Due to the nonlinearities of the equations, two simulations having
nearly the same initial condition can have a totally different behaviour. For example, two
nearby smoke particles leaving a cigarette can end up at entirely different locations after
some time. This clearly limits the control the user has over the phenomenon. For other
complex natural phenomena, physical models do not yet exist and their study is still an
area of research in physics or engineering.

2.1.3 Nondeterminism

What do we do in the case of unpredictable phenomena? We roll the dice! This is the
approach adopted in most applied sciences when dealing with complex simulations. Instead
of modelling the phenomenon deterministically, some amount of randomness is introduced
to model the complexities of the model. This approach was introduced to computer graphics
by Fournier, Fussell and Carpenter [12]. This approach is also called data amplification;
the initial data which are being amplified are the macroscopic features and the statistical
properties provided by a user. The model presented in this thesis falls into this category.
The phenomenon is modelled as a random function defined in 3-space. It is therefore limited
to phenomena which can be described as the set of values of a certain function. Examples of
such phenomena include mountain terrain, hazy or partially translucent media and water.
These types of functions are known as random fields. The basic theory of random fields
will be reviewed in the next section. More precisely, first the notion of random variable
will be explained, and then the second-order statistics of a random field will be introduced,
specifically the variogram, covariance function, correlation function and the spectral density
function. The famous Khintchin theorem is derived from simple heuristic arguments using
the spectral properties of a random field. To understand most random field synthesis
algorithms, the theory of linear filters will be briefly reviewed. At the end of this chapter
we will be devoting a section to random fractals, because of its popular use in computer
graphics.

2.2 Probability Theory Review

This section presents rather informally the basic notions of random fields. The goal is to
emphasize the main concepts underlying the model, rather than giving a complete and
rigorous mathematical presentation. For a rigorous presentation of the material see [43].
Most of the heuristic arguments are taken or adapted from [40].
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2.2.1 Random Variables

A random wvariable X is a variable which takes all the possible values assigned to each
realization of a phenomenon. For example, in the case where the phenomenon is “the
tossing of a coin”, then X can take only two values (e.g., 0 means “heads” and 1 means
“tails”). The overall behaviour of a random variable (or sets of them) is governed by a
probability distribution. In the case where the set of possible realizations is discrete, the
probability distribution is simply a function P(X = z) which assigns a probability (between
0 and 1) to the event z. Summing over all possible events gives:

P(X=2) = 1. (2.1)

all possible x

In the continuous case the probability distribution is a function f, where f(z) is the prob-
ability that X has a value between z and = + dz. The continuous version of Equation 2.1

becomes:
/’ fla)de = 1. (2.2)
all possible x

A probability distribution thus entirely characterizes the stochastic phenomenon. In prac-
tice, this distribution is hard to find directly or does not exist. Thus, instead of working with
the probability distribution we use statistics of the random variable X. A statistic is simply
a function of the variable X that provides “useful” information about the phenomenon.
The simplest statistic is the expectation of X:

u:mm:/ﬁﬂ@m. (2.3)

Intuitively, p is the mean value of the variable X. A measure of how the values of X are
distributed around the mean is given by the variance statistic:

o =Var[X]= E[(X — p)?] = E[X7] - > (2.4)

The knowledge of these two statistics (i and o?) entirely determines the probability density
in case the phenomenon is Gaussian; more precisely, if the probability density function f is

given by: ) R
fle) = <o=—exp (—5( - )) (25)

This is one of the reasons why the Gaussian distribution is so popular in the applied sciences.
For most other distributions one needs higher order statistics, more precisely statistics
having terms

E[X") (2.6)

where n is greater than 2. In many cases, however, these phenomena can be approximated
by Gaussian distributions.

2.2.2 Random Fields

Most phenomena cannot be modelled using only a single random variable X. For example,
if X is the value of the Dow Jones, then it would only model the behaviour of the stock
market at a single instant of time. This is clearly not useful when one wants to predict
future values! The solution is to have a different random variable at each time ¢. Hence
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Figure 2.1: White noise

we define a random process as a function X (¢) which returns a random variable for each
value of time ¢t. More generally we can consider random fields, where we allow the domain
of the function to have a higher dimensionality. For example we can model terrain as a
height random field h(z,y); in this case the argument is two-dimensional. An example of
a three-dimensional domain can be given by clouds. Clouds can be modelled as density
maps, for example when a value of one indicates total opacity and a value of zero stands for
total translucence, the intermediate values give all the interesting visual effects. A dynamic
phenomenon such as cloud formation can be modelled by a four-dimensional random field
d(z,y,z,t), for each fixed ¢ we get an instance of the previous three-dimensional model.
In the rest of this thesis a random field will be denoted by R(t), where t is a variable of
any of the above dimensions. Note that we can also allow the range of the function R to
be of a higher dimension. For example, when wind velocities are modelled, the function R
is three-dimensional. The behaviour of the random field is given by a probability density
function which depends also on the argument t. In other terms for each value of t a density
function fg(z) has to be specified. As a consequence, the two statistics introduced earlier
now also become functions of the argument t: g = p(t) and 0? = %(t). In the next section
we will introduce other statistics, which are specific to random fields.

2.2.3 Correlation Measures

Let us consider the most simple random field: for each value of t the function returns an
independent random variable. Independence means that the value of the field at a certain
location t is unaffected by the values at other points. What we get is something called white
noise. Those who fall asleep in front of their television set are surely familiar with figure 2.1,
however it doesn’t model any interesting visual natural phenomena. Discernible structure
is lacking. When we consider a mountain terrain, for example, we expect the heights at two
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Figure 2.2: Two correlated random fields

nearby positions to be nearly the same (except of course near a steep cliff). This structure
is captured by a correlation measure. Intuitively, the correlation measure tells us how the
values of the random field R at two given positions t and s are related. Figure 2.2 shows
two samples of a correlated random field. Clearly these pictures remind us of clouds. The
most “natural” correlation measure is the variogram, which is basically the mean square
difference of the random field at two locations t and s:

1
Y(t.s) = SE[(R(t) - R(s))*]. (2.7)
Another possible correlation measure is the covariance, which is defined by:

C(t.s) = E[R(®)R(s)] - p(t)s). (2.8)

Intuitively, positive values of the covariance function indicate that the values of the random
field at the two positions tend to be close. Conversely, negative values of the covariance
indicate a probable large difference in values. It is sometimes preferable to work with the
normalized version of the covariance, which is the correlation function

C(t,s)
a(t)o(s)

The functions just introduced along with the variance o?(t) are the second-order statistics
of the random field. In the rest of this thesis it will be assumed that second-order statistics
are sufficient to characterize the phenomenon, the underlying assumption being that higher
order statistics do not add more visual detail. This is widely assumed in most applied
sciences; refer to computational vision [38] or geostatistics [18]. Lewis uses this assumption
in computer graphics [23]. The domains of these functions have a dimensionality that is

plt.s) = (2.9)
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twice as high as that of the random field. One way to lower this high dimensionality is to
assume that the correlation measures only depend on the separation h = s — t between the
two locations. Intuitively, this means that the phenomenon has similar statistics everywhere.
The covariance function, for example, now becomes a function of the single variable h:

C(t,s)=C(t,t + h) = C(h). (2.10)
And the correlation function is equal to:

C(h)

p(h) = 7o)’ (2.11)

meaning a simple scaling of the covariance. Another widely accepted assumption is to
consider only random fields with constant means. That is, those u(t) that do not depend
on t:

ut) = (2.12)

for all t. Although there are many phenomena for which this assumption does not hold,
it works well in practice as will be seen later in this thesis. The two above assumptions
(dependence on distance only and constant mean) are referred to as the homogeneity as-
sumption in the statistics literature [40] [43]. A random field satisfying these assumptions
is called homogeneous. Without loss of generality we can assume this constant mean to be
equal to zero. This simplifies the notations that follows.

Next we state some properties of these correlation measures which directly follow from
their definitions and the above simplifying assumptions. The covariance and the correla-
tion functions have the property of being positive definite. To see this consider n points
t1,t2,...,t,, and let ¥ be a random variable defined by the following linear combination:

Y = MR(t) + AaR(ts) + -+ A\ R(t,). (2.13)

From the fact that the variance of any random variable is positive, we get:

VarlY] = ZH:ZH:/\i/\jC(ti —t;) > 0. (2.14)

=1 7=1

Dividing by C(0) > 0 on both sides yields the same inequality for the correlation function
(by Equation 2.11). Functions satisfying these inequalities for any choice of the coefficients
A; are called positive definite, hence both the covariance and the correlation function fall
into this class. These inequalities limit the choice of possible candidates for covariance and
correlation functions. Conversely one can prove that any positive definite function is the
covariance function of some random field [43], hence the covariance functions are exactly
the positive definite functions. From the above inequalities we can deduce the following
properties by appropriate choices of coefficients A;:

C(0) >0 (2.15)
C(~h) = C(h) (2.16)
|C(h)] < C(0). (2.17)

Similar relations can be obtained for the correlation function. The terms of Equation
2.14 can be arranged in a matrix, which is the covariance matriz of the random variables
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R(t1), R(t2), ..., R(t,):

C0) Oty —ty) Oty — t,)
o C(tg:—tl) C(:O) C(tz:—tn) | o.15)
Cltn —t1) Cltn—t2) - C(0)

The matrix is clearly symmetric, which means that all its eigenvalues are real, furthermore
Equation 2.14 implies that these eigenvalues are positive. To see this take the A; to be equal
to the components of an eigenvector corresponding to one of the eigenvalues. This fact will
be used later in this thesis. The variance of the random variable Y can also be written
down in terms of the variogram ~:

n n

VarlY]=C(0)3 A DA =D ) Aidv(ti—t;) > 0. (2.19)

n n
=1 7=1 =1 7=1

If we assume that the sum of the coefficients vanishes, more precisely if

> Ai=0, (2.20)

then we get an inequality very similar to Equation 2.14 for the variogram:

n n

VarlYT==>"> XA(ti—t;) > 0. (2.21)

=1 j5=1

Assumption 2.20 is very common in linear geostatistics [18], where one often passes from a
formula for the covariance to a formula for the variogram simply by substituting (—v) for
C'. A consequence of Equation 2.21 [43] is that the variogram cannot grow faster than ||h||?
as ||h|| tends to infinity. In fact,

7(h)

—— =0. 2.22
s TH]2 (2.22)

Therefore, variograms can be unbounded, but their rate of divergence is bounded. The
variogram also satisfies the following obvious properties:

7(h) =20 (2.23)
7(h) =~(-h) (2.24)
¥(0) = 0. (2.25)

The covariance function and the variogram are in fact directly related, in certain cases.
If we assume that the covariance exists, then a simple calculation shows that the variogram
is given by

+(h) = C(0) — C(h). (2.26)

This relation also directly implies that the variogram must be bounded by:

+(h) < 2C(0), (2.27)
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and therefore a random field with an unbounded variogram cannot have a well-defined
covariance function. The existence of the variogram in general does not guarantee that the
covariance is defined. The best known counter-example is Brownian motion, whose variance
is undefined (i.e., infinite), but has a well defined variogram that is known to be

7 (h) oc [[hl]. (2.28)

In some cases, however, when the random field has zero mean, p(t) = 0, and the variogram
tends asymptotically towards some value A, i.e.,

(h) = A, (2.29)

lim
|hf|—co
then one can define a pseudo-covariance equal to
C'(h) = A —7(h). (2.30)

This definition coincides with Equation 2.26 when the covariance is well defined, and indeed

A= 0(0).

2.2.4 Isotropic Random Fields

All the aforementioned correlation measures depend on a separation h, which means that
we can model phenomena with high anisotropies, i.e., with characteristics along preferred
directions in space. A strong simplifying assumption is to consider instead isotropic random
fields, isotropy meaning that the correlation measures depend only on the distance | h]|
between two points. In mathematical terms:

C(h) = C([[af]) = C(7). (2.31)

Such correlation measures are now one-dimensional, and therefore we can restrict our anal-
ysis to one-dimensional functions, which highly simplifies the analysis involved. The class
of isotropic correlation functions p is more restricted than the general case, as will be shown
directly. All covariance functions have a lower bound inversely proportional to the dimen-
sion d of the domain of the random field. To see this, we consider d + 1 points such that
their relative distances all equal 7. Equation 2.14 with the A; all set to 1 is:

d+1d+1
C0)>2> p(r) = 0. (2.32)
=1 7=1
As p(0) = 1 this expression becomes:
(d+ 1)+ [(d+1)* = (d+ Dp(r) 2 0 (2.33)
or, after simplifications:
1
p(T) 2>~ (2.34)

Hence this gives a lower bound for an isotropic correlation function, the bound getting
tighter with the dimension. In [43] tighter bounds are given, using properties of the spectral
density function (this function will be defined in the next section). For example, for d = 2
the bound is —0.403 and for d = 3 it is —0.218.
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Many natural phenomena are highly anisotropic. Consider for example the ripples on
the surface of the sea caused by the wind. However these anisotropies can be modelled by
transforming an isotropic correlation measure. For isotropic random fields, all points lying
on the same sphere centred at a point t have the same correlation with t. One can instead
insist that all points on an ellipsoid about t have the same correlation. An ellipsoid can be
obtained from a sphere by a simple scaling transformation along a set of axes. Hence we
can define the covariance (or the variogram) as:

C(h) = C(h'Qh) (2.35)

where Q is a d X d positive-definite and symmetric matrix and d is the dimension of the
domain of the random field. h? denotes the transpose of the vector h. Correlation measures
defined in such a manner are called ellipsoidal [40]. Setting Q to the identity matrix brings
us back to a standard isotropic correlation. All the properties of the isotropic case are
preserved in this more general setting. The matrix Q is a rather unintuitive way to specify
anisotropies for a general user. The user could instead specify the major axes and the
corresponding eccentricities e;. From these values Q can be calculated automatically. We
form a diagonal matrix D with respect to the coordinate system defined by these axes, with
elements A;, given by:

A = (2.36)

1
e’
If P is the transformation matrix from the canonical coordinate system to the system given
by the major axes of the ellipsoid, then

Q = P'DP. (2.37)

2.2.5 Spectral Representation of a Random Field

In this section we will review the characteristics of a homogeneous random field in the
frequency domain. The main result is that the spectral density function and the covariance
form a Fourier transform pair. To show this result, the approach taken by VanMarcke in
[40] will be used, which does not require the use of complex random fields. Furthermore,
only the case where the domain is one-dimensional will be considered, since the extension
to higher dimension is straightforward [40].

One of the most elementary homogeneous random fields is the random harmonic oscil-
lator of frequency w, defined by:

X(t) = Acos(wt + ¢), (2.38)

where A is a random variable with zero mean and ¢ is uniformly distributed over the interval
[0,27]. Furthermore these two random variables must be independent. The harmonic
oscillator has zero mean and a variance given by:

o = E[X%(1)] = E[AYE[cos®(wl + 6)] = %E[Az]. (2.39)

This shows that the variance is directly proportional to the average energy (or power) of
the oscillator. By using some basic trigonometry, it is possible to calculate the covariance
as well:

C(r) = E[X(7)X(0)] = 02 cos(wrT). (2.40)
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Let us now consider any homogeneous random field R(?). It can be proven [43], that any
such field can be closely approximated arbitrarily by a sum of (random) harmonic oscillators:

R() ~ i Rilt) (2.41)
i=—N
where
Rz(t) = A COS(wit + (bz) (2.42)

The random amplitudes A; and random phase angles ¢; are mutually independent. Hence
the variance of the random field R(¢) is given by

C0) =0 = 'Z o = 'Z —E[A7. (2.43)

[\

Let us assume that the spectrum, i.e. the set of frequencies w;, is a uniform partition of
the interval [—-N, N]. More specifically the frequencies are given by w; = Aw(2i — 1)/2.
This analysis shows that the variance (power) is distributed over the discrete frequencies
w;. This suggest the introduction of a spectral mass function:

S(wi)Aw = %E[A?]. (2.44)

The function S is called the spectral density function, and gives the contribution of each
frequency to the total variance (power) of the random field. Until now we have only consid-
ered discrete frequencies. The usual way to extend the theory to the continuous case (for
applied mathematicians !) is to let N and Aw tend to infinity and zero respectively, while
holding their product constant. By taking these limits in Equation 2.43 and using Equation

2.44, we get:
+oo

C(0) = / S(w) do. (2.45)

—00
We now try to find a similar relation between the correlation function and the spectral
density function. We begin by observing that

C(1) = E[R(T)R(0)] = ’Z Ci(T). (2.46)

Knowing the covariances C; of each oscillator, the covariance can be expressed in terms of
the spectral density function:

N
C(r) = Z S(wi)Aw cos(w;T). (2.47)
i=—N

Using the same limit argument as before we finally get the relation in the continuous case:

+oo
C(r) = / S(w) cos(wT) dw. (2.48)

— 00
This is the famous theorem of Khintchin, which states that the spectral density function
and the covariance form a Fourier transform pair. Therefore both functions have exactly
the same modelling power from a theoretical point of view. The Khintchin theorem also
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provides us with a characterization of the allowed covariance functions for homogeneous
random fields, namely as the inverse Fourier transform of any positive function S(w) > 0.
Because of Equation 2.26, the variogram is also related to the spectral density function by:

o0
(1) = /+ S(w)(1 = cos(wr)) dw. (2.49)

— 00
In the case of isotropic random fields it is unnecessary to consider spectral densities with
domains of dimension higher than one. This is because the Fourier transform preserves
isotropy, hence the spectral density of a random field with isotropic covariance is also
isotropic. However, not all inverse Fourier transforms of positive functions are covariance
functions of isotropic random fields. One has to consider other transforms instead. If S(w) is
any positive function, then all the two-dimensional isotropic covariance functions are given

by:

+ oo

Cr) = 2r /0 S(w)Jo(wr o dw (2.50)

where Jy is the zero order Bessel function of the first kind [43]. For the three-dimensional
case, all such covariance functions are given by the transformation:

Foo sin(wT)

Clr) = 47r/ S(w)

w? dw. (2.51)
0 wT

Similar transformations exist for higher dimensional isotropic random fields [43]. There
is a surprising result mentioned in [40], which is only true for isotropic spectral density
functions of random fields with a three-dimensional domain. The result is that for this case
the spectral density function must be monotonically decreasing. In particular no oscillating
functions are allowed. Note that this does not imply that the correlation function has to
be monotonically decreasing, as this property is not necessarily preserved by the Fourier
transform.

2.2.6 Transforming Random Fields

Until now we have not assessed the problem of actually generating a random field with
prescribed correlation function (or spectral density function). One way to generate such
a random field is to transform a random field that is easy to generate. In most cases the
latter will be white noise, which has a correlation function that is the delta function and
that has a constant spectral density function.

One of the most common transformations is the shift invariant linear filter, which is well
known in signal theory. A filter can be viewed as a black box, which, when given an input
signal z(t) produces an output signal y(t) = L{z(t)}. A linearity condition is imposed on
the filter, i.e. if 21 and 25 are two signals and A is a constant then

L{Az1(t) + z2(t)} = ALA{z1(t)} + L{za(t)}. (2.52)
The filter is shift invariant if the following equality holds for all input signals z(t):
L{z(t+h)} = y(t + h). (2.53)

One such filter is explicitly given by:

y(t) = /k(s ~ t)a(s) ds. (2.54)
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This is actually a convolution of the signal z(t) with the convolution kernel k(t). The
filter is thus entirely specified by the function k(t). As in the previous section we explore
what happens in the “frequency domain”. Let X(w), Y(w) and K(w) denote the Fourier
transforms of z(t), y(t) and k(t) respectively. By applying the Fourier transform to both
sides of the equality in Equation 2.54 and using some calculus we get

Y(w) = Kw)X(w). (2.55)

It is the well known result that a convolution corresponds to a direct multiplication in the
frequency domain. Now we understand why this transformation is called a filter. A well-
chosen function K attenuates or amplifies the values of the input signal X. For example if
K is a box centred at the origin, then it acts as a “low pass” filter, killing all the higher
frequencies (typically unwanted noise) of the input signal X. Let us now return to random
fields. Let the input signal 2(t) be a random field with known covariance and spectral
density functions Cy(7) Sx(w) respectively. A simple calculation shows that the covariance
Cy(1) of the output random noise y(t) is given by

¢y = [ [ HORmCLr + €~ ) dgan, (2.56)

Thus by choosing the right kernel & we can get the desired correlation. There exists a similar
relation between the spectral density functions. This relation is established as before by
taking the Fourier transform on both sides of the equality of Equation 2.56 and using some
basic calculus:

Sy (w) = | K (w)]2Sx (w). (2.57)

Again the relation is simpler in the frequency domain. The Fourier transform of the kernel
K is easier to construct than the kernel itself. To summarize, Equations 2.54 and 2.55 tell
us how to generate the random field, and Equations 2.56 and 2.57 tell us how to find the
kernel. At first glance, modelling in the frequency domain with the spectral density function
seems much easier. The problem, however, is that we do not live in the world of frequencies
and moreover it is not always easy to think in terms of them. After having generated Y (w)
we have to take an inverse Fourier transform to get the desired random field y(t). As we
will see in subsequent sections, this imposes certain practical limitations on the spectral
approach.

To have a better understanding of the procedure described above let us consider a
specific example. We shall consider the case where the input random field z(t) is white
noise; its second-order statistics are given by

Co(T) o 6(T) (2.58)
Sx(w) x 1 (2.59)

where ¢ is the Dirac delta (generalized) function. Because of the “point sampling” property
of the delta function:

[ matr - mydn = k(r), (2.60)

the second-order statistics of the output field y(t) are given by:

Cy(ryox [ b€k +7) de (2.61)
Sy (w) x |K(w)|2. (2.62)
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In frequency domain the convolution kernel is thus directly given by the (desired) spectral
density function of the output random field. The determination of the kernel from the
covariance function is less straightforward, but is nevertheless possible in certain cases.

2.3 Random Fractals

2.3.1 What is a Fractal ?

In this section the theory of a certain class of random fields will be reviewed: random
fractals. Random fractals were first studied by B. Mandelbrot in his now famous Fractal
Geometry of Nature [25]. Fractals have been widely used in computer graphics, and con-
stitute the most popular subclass of stochastic models [12]. Fractals are especially well
suited to the description of highly irregular phenomena, exhibiting detail at all scales, the
most striking example being the Mandelbrot Set. Most fractals, however, also have the self-
similarity property, which roughly means that the fractal contains copies of itself at smaller
scales. A good illustration of the latter is the von Koch Snowflake. Exact self-similarity
(such as exhibited by the von Koch snowflake) is nonexistent in Nature. Therefore Mandel-
brot introduces the concept of statistical self-similarity. This concept will be defined more
precisely later. We will first consider the one-dimensional case, and then mention extensions
to higher dimensions. There are many ways to define a random fractal. The usual approach
[25] [26], is to define a random fractal as fractional Brownian motion (fBm). That is, a
random field F(¢) whose variogram is given by:

() o< |72 (2.63)

Because of the constraint on the growth of the variogram, given by Equation 2.22, the
parameter H cannot exceed 1, and by continuity we have H > 0. This parameter is directly
related to the fractal dimension D [41] of the fractal, by the relation H = 2 — D. In
particular, contrarily to our intuitive notion of (euclidean) dimension, D can take non-
integer values. The fractal dimension lies actually somewhere between 1 (H = 1) and 2
(H = 0), which means intuitively that, when embedded in a plane, the fractal is an object
between a straight line and a plane. Thus, highly irregular curves which tend to fill the
plane have fractal dimensions close to 2, and curves that slightly deviate from a line tend to
have dimensions close to 1. For H = % we get ordinary Brownian motion. The variogram

is self-similar in the sense that for any scaling factor @ > 0 we have:

2H

y(ar) o a” y(T). (2.64)

Hence, no characteristic scale can be associated to the variogram. Furthermore, it can be
proven that only variograms of the form defined by Equation 2.63 are self-similar in this
sense.

2.3.2 Spectral Analysis of a Fractal

The variogram of a fractal is clearly unbounded for all the values of H considered, hence,
according to Equation 2.27, an fBm has no defined covariance and cannot be homogeneous.
Therefore all the theory previously developed cannot be applied directly to random fractals!
Fortunately, the increments of an fBm are homogeneous, so the previous theory can be
applied to these increments. It can be shown [43] that in fact Equation 2.49 remains valid.
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Therefore, the spectral density function of the random fractal is given by the following
equation:
+ oo
r2H / S(w)(1 = cos(wr)) dw. (2.65)
— 00
Using integration by parts it is not to hard to verify that a spectral density function equal
to

S(w) x (2.66)

Wb

w

is a solution of the above equation, if 3 = 2H + 1. The spectral density is non-zero for all

frequencies. This implies that an fBm has detail at all scales, which with the self-similarity

property, is the most important characteristic of fractals. The exponent 3 is related to the
5-0

D=0 (2.67)

As we decrease the exponent 3 (and hence increase the fractal dimension D), the spectral
density function takes higher values at the high frequencies and smaller values at the low
frequencies. This increase in high frequencies results in increased small-scale deviations,
hence the curve will tend to be plane filling. An increase of the exponent 5 has the exact
reverse effect: the low frequencies tend to dominate, and hence the curve has mainly large-

fractal dimension D by

scale deviations and is geometrically closer to a straight line.
The obvious way to generalize these definitions to higher dimensions [41], is to assume
that the variogram is isotropic, namely that

7(h) o [|b|*. (2.68)
The spectral density function then is equal to
S(w) x ||w||_ﬁ. (2.69)

If the dimension of the argument is d then the parameters H and 3 are related to the fractal
dimension D by the following relations:

H=d+1-D (2.70)
B =2d—2D+3. (2.71)



Chapter 3

Previous Work

In this chapter we review previous models of natural phenomena. For each model we
discuss its applicability to three-dimensional fuzzy and partially translucent phenomena.
The main difficulty with most models is their high storage cost. Most of these models
only synthesize random fractals. These are: the spectral approach of Voss, the stochastic
displacement technique of Fournier et al. and more recently the constrained fractals of
Szeliski and Terzopoulos. Lewis generalizes stochastic displacement to random function
with arbitrary correlation functions. Gardner’s model is specific to clouds. The models
of Kajiya and of Perlin and Hoffert are alternatives to stochastic modelling for simulating
natural phenomena.

3.1 Spectral Models

Spectral models are characterized by the fact that the phenomenon is entirely specified by
the spectral density function. The most common approach is to filter white noise in the
frequency domain, and then to take the inverse Fourier transform in order to obtain the
resulting phenomenon. Voss [41] was the first to suggest a practical approach to simulate
visual phenomena. He considers only fractal spectral density functions, namely those given
by Equation 2.66. Let us consider in more detail how his algorithm works. The random
field Y is first generated in the frequency domain by filtering a white noise W(w), according
to equation 2.55:

_E
Yiw) = |l 7> W(w). (3.1)
Next Y is sampled at a set of NV discrete frequencies wqg,w1,...,wn_1. Then the random
field y(t) is generated at a set of discrete points tg,t1,...,tx_1 using the discrete Fourier

transform (in practice, the Fast Fourier Transform):

N-1
gk = y(tr) = D> Y (w) exp(2miw; - ty,) (3.2)
=0
where “-” denotes the standard dot product of two vectors. This method is relatively fast

(due to the Nlog N complexity of the FF'T). The major drawback is that all the coefficients
yr have to be generated at the same time for the FF'T algorithm to be usable. This is
particularly prohibitive in terms of storage for the three-dimensional case (e.g. for clouds).
As an example, if the sampling grid is 256 X 256 X 256 we must store (at least) 224 bytes;
i.e., 16 megabytes! The major drawback, however, of this algorithm as a modelling tool, is

17
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the lack of control over the global shape of the phenomenon. The only way to change the
global shape is to modify the random seed of the white noise generator. The global shape
one obtains in this way is, however, totally unpredictable. Control over the global shape is
important in dynamical simulations and design. Furthermore no efficient algorithms have
yvet been developed to render volumes given as a set of values at discrete points, especially
if the phenomenon in question is a density map, such as a cloud. Kajiya and VonHerzen
have developed such physically based rendering algorithm for the case of density arrays
[20], which is a brute force extension of Blinn’s earlier work [6], but the computation times
involved remain prohibitive. Voss, however, has produced some very impressive pictures of
clouds by modelling a three-dimensional cloud as an ensemble of “thin” two-dimensional
clouds. This cuts down the storage requirements and simplifies the rendering somewhat.

Recently Anjyo [1] has generalized Voss’s work for spectral distributions of the form

m

S(w) x T (3.3)

where m, ¢,  and n are parameters. For m = ¢ = 0 and n = 1 we get the fractal model.
The final random field R(t) is given by a sum of N stochastic waves W;(t). Each stochastic
wave is the product of two one-dimensional random process X;; and X5, generated by the
spectral method, along the directions d;; and d;q:

Wi(t) = Xp(di - t)Xra(diz - t). (3.4)

For example, it is possible to approximate the known spectral distribution of ocean waves
with this model. His approach, although more general, suffers from the same limitations as
Voss’s model.

3.2 Stochastic Displacement

Fournier, Fussell and Carpenter introduce in [12] the most popular fractal based model;
random midpoint displacement. Their model is very efficient: it can be implemented by
using only addition and shift operations. Furthermore the global shape can be controlled
by specifying the value of the phenomenon at certain given points. Hence they call their
algorithm stochastic interpolation. As in Voss’s model, it is limited to fBms. Instead of
using the spectral characterization of fBm, they use the variogram as a modelling tool. The
algorithm is recursive: at each step more detail (higher frequencies) is added by refining
the sampling grid into twice as many samples in each direction. The new values are linearly
interpolated from the old ones and then perturbed by some Gaussian noise having zero
mean and a variance which must satisfy Equation 2.63. A lot of effort has been put into
ray-tracing these models ([19] and [8]). Again this method requires a lot of memory and
hence is unsuited for three-dimensional phenomena. Furthermore, as noted in [41], this
model produces only true fBm in the case of Brownian motion (H = %), because only the
new points are perturbed at each recursion level. This shortcoming may produce visible
creases in the case of terrain modelling, though whether or not such artifacts are visually
annoying is arguable. Voss overcomes this problem by updating all the points at each level
[41].
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3.3 Generalized Stochastic Subdivision

Lewis in [23] generalizes the midpoint displacement algorithm for non-fractal random fields.
The statistics of the random field are specified by a correlation function. He was the first to
suggest the use of the correlation function as a modelling tool in computer graphics. Instead
of linearly interpolating the new values at each level, the values are estimated from a set
of points at the coarser level. The estimation procedure involves the solution of a linear
system, which depends on the correlation function. As the model presented in this thesis
also uses an estimation procedure, we will delay the explanation of estimation methods to a
later chapter. Lewis’ model has the same drawbacks as the previous stochastic subdivision
algorithm. Because fractals have no defined covariance, this model is unable to generate
fBms. It therefore does not truly generalize the previous stochastic subdivision algorithm.

3.4 Constrained Fractals

Recently, Szeliski and Terzopoulos presented in [37] a new model to generate fractals. The
main advantage of their model is the possibility of controlling the global shape of the phe-
nomenon. The model has two components; a smooth component (a deterministic spline
which approximates the data constraints provided by the user) and a stochastic compo-
nent that gives the fractal statistics. This model thus synthesizes two popular modelling
techniques in computer graphics into one. The model is generated by solving a variational
problem. The quantity to be minimized is the sum of the “spline energy” and the “data
constraint” energies. It turns out that the frequency response of the spline energy has
a fractal spectrum (see Equation 2.66). As energies are related to probabilities by the
Boltzmann equation of thermodynamics, the variational problem can be interpreted as a
mazimum a posteriori (MAP) estimation problem, where one wants to generate the sample
with the highest probability, given the data constraints and the fractal a priori model. The
variational problem is solved by using a stochastic coarse-to-fine relaxation scheme. At
each relaxation step a certain amount of noise is added, where the variance is proportional
to the grid level. This method, however, has the same storage requirement problem as
the FFT-based approach and, hence, is unsuited for three-dimensional phenomena such as
clouds.

3.5 Textured Ellipsoids

A model more in the spirit of the one presented in this thesis was proposed by Gardner [13].
His model works essentially for density maps, which includes clouds and trees. Gardner uses
the ellipsoid as the basic building block of his model. The user specifies the global shape
of the phenomenon by arranging an ensemble of ellipsoids. The small-scale detail is then
added by using a (solid) texture. Gardner uses an analytic random function texture. This
texture function will be studied in more detail in a later chapter. His rendering algorithm is
very simple. He modifies the translucence threshold as a function of the projected equation
of the ellipsoid onto the viewing plane. This threshold is very high near the border of the
ellipsoid and very low near the centre of the ellipsoid. His rendering algorithm can easily be
implemented into a standard ray tracer. The drawback of this model is that it is somewhat
restricted to ellipsoids and translucent phenomena.
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3.6 Thick Textures

In the SIGGRAPH 89 proceedings one can find two models that are similar in spirit. In both
models one defines the global shape of the phenomenon with standard graphics primitives,
e.g. polygons or patches, and then adds small-scale detail by mapping a “thick” texture onto
it. Kajiya [21] calls this texture texels. A texel is a cube containing microsurfaces. Instead
of specifying all the microsurfaces, Kajiya introduces three functions for each texel: (i) a
scalar density function, which basically measures the density of microsurfaces at a specific
point of the cube; (ii) a frame bundle, which is a collection of three vectors specifying the
local orientation of the microsurfaces within the cube; (iii) a bidirectional light reflection
function that indicates the surface properties of the microsurface. The entire “thick” texture
is given by mapping many texels onto the object. Of course one has to be careful that the
texels blend together in a smooth way. Kajiya uses this model to simulate fur, and has
generated the most impressive image of a teddy bear to date. However the computation
times are far more than prohibitive.

The other model is due to Perlin and Hoffert [31]. In this model all phenomena are
simulated as density functions D(x). The soft region of the object is defined as the ensemble
of x for which 0 < D(x) < 1. The modelling power comes from the transformation of the
soft region by different functions. This extends Perlin’s earlier work in functional modelling
[30]. With this model Perlin and Hoffert are able to model fur, fire and glass. The rendering
is accomplished by using expensive volume-rendering techniques.



Chapter 4

The Model

The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain verbal
interpretations, describes observed phenomena. The justification of
such a mathematical construct is solely and precisely that it is
expected to work.

John Von Neumann

In this chapter we present the main contribution of this thesis, namely a new multi-scale
stochastic model for computer graphics. In the next section we describe the importance
of scales in modelling natural phenomena, and show how our model separates the scales.
In the second section the model of the global shape is presented along with the theory of
Kriging. The third section describes many existing random functions which can be used
to model the small-scale detail. We conclude this chapter with a model called stochastic
Kriging which combines the two scales elegantly, and we will mention possible extensions
of the model to more scales.

4.1 Separation of Scales

When we observe a natural phenomenon, we find that its visual characteristics change with
scale. Consider for example a mountain: at a very large scale (i.e., viewed from far away)
only the major trends of the relief are visible, at a medium scale (i.e., by looking only at
a portion of the mountain) we start to observe the distribution of vegetation and different
rock types, at the small scale (i.e., when observing the ground) we see the structure of a
particular vegetation or rock type. There is no reason for the correlation measures to be
the same at each scale. All fractal models in computer graphics, however, assume that the
statistics are the same at all scales, because of the statistical self-similarity property given
by Equation 2.64. Therefore it seems appropriate to consider multi-scale models in which
the final model is the sum of several models at different scales. The model at each scale
is specified by a different correlation measure. The correlation measure alone, however, is
insufficient. We also want to be able to constrain the values of the phenomenon at certain
locations. This allows a control over the phenomenon which is essential in design and
animation.

In this thesis we will focus mainly on two-scale models: the global shape and the small-
scale detail. The global shape captures only the main features of the phenomenon. It
emerges if we “blur” (remove the high frequencies) of the phenomenon. The global shape
on its own is very smooth and makes the phenomenon look artificial, or man made. However,
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as will be shown later in this chapter, this smooth shape will be very useful in the rendering
process, such as the self-shadowing effect for clouds. The small scale detail is added to
make the phenomenon look more “rough” or “complex”. The user has control over the
phenomenon by specifying the value of the global shape at certain locations.

One can argue that it is unnecessary to restrict oneself to the theory of random fields.
That is, to consider only valid correlation measures and spectral density functions. As we
are only interested in the visual characteristics of our model, another approach would be
to create “ad hoc” functions for all kinds of phenomena. These functions are generally
constructed by trial and error. More precisely, in this approach one starts with some
function and then modifies it according to the visual result produced. This is the approach
taken, for example, by Perlin [30]. The advantage of our more rigorous approach is that
we can estimate correlation measures and spectral density functions from pictures of real
phenomena using well established techniques. Furthermore there already exists abundant
literature about such functions for many phenomena. Another advantage of our model
is its generality. The same mathematical framework can be applied to a large variety of
phenomena. Finally, the rigorous models can be analyzed more precisely. For example,
aliasing problems can be avoided in advance if we know the spectral characteristics of our
random field exactly.

4.2 The Global Shape

4.2.1 Smooth Estimation

The user constrains the global shape by specifying n scalar values d; at the correspond-
ing locations t;. The global shape constrained by these data can then be calculated by
interpolation or by other approximation techniques. Exact interpolation may not seem to
be a crucial condition in computer graphics; spline approximation techniques could also be
used. However it turns out, as will be demonstrated, that exact interpolation has a simple
mathematical formulation. Hence the value of the global shape at another location t is
given by smooth interpolation from the given values. In smooth interpolation we look for a
smooth function L(t) such that

L(t) = d; (4.1)

for 7 = 1,...,n. Furthermore we require that the function is “well behaved” away from
the data locations. It is well known that Lagrange interpolation can take huge values away
from the data locations, hence that scheme is not suitable. Another approach is to use a
so called thin plate interpolation [7] [27] [37]. This interpolation behaves like a thin plate
constrained at the data locations which means that it tends to remain flat and hence is well
behaved away from the data locations. A more general approach is to view the interpolation
problem as an estimation problem. In (linear) estimation theory we wish to compute the
value of a random field at a certain location t, knowing (i) the random field at a set of
locations t; and (ii) the (second-order) statistics of the random field. In our case the known
values are the d;, and the second-order statistics are provided by a correlation measure.

Let us assume that the global scale is modelled by a homogeneous random field R(t)
with known second-order statistics. Therefore we can interpret the values d; as the values
of this field at the locations t;:

dy = R(t1),....d, = R(t,). (4.2)
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Because we only consider second-order statistics it is sufficient to work with estimators of
the form:

uﬂ:fpﬂh (4.3)

where the coeflicients A; have to be determined. We impose two reasonable constraints on
such estimators. First an estimator must be correct (unbiased):

E[L(t)] = ER(t)] = . (1.4)

This corresponds to the equation:
dAi=1 (4.5)

This condition at most determines one of the unknowns A;. Therefore we need another
constraint. A sensible oneis to insist that the estimator have the minimum possible variance,
in other words

E[(L(t) - R(t))"] (4.6)

is minimum over all such estimators. An estimator satisfying the above constraints is called
a best linear unbiased estimator or in short BLUE. Here, “best” means minimum variance.
In the next section a technique called Kriging will be described, which solves the above
estimation problem.

4.2.2 Kriging

Let us first assume that the covariance of the random field R(t) is well defined. It is
important to note that in the development which follows it is not necessary to assume that
the covariance function is isotropic. The minimality condition given by Equation 4.6 can
be written in terms of the covariance function

C(O)—QZH:/\Z’C(t —ti)—l—zn:zn:/\i/\jC(t]‘ —ti). (4.7)

=1 j5=1
This is a classic (constrained) minimization problem which can be easily solved by intro-

ducing a Lagrange multiplier v. This procedure provides a system of n 4 1 linear equations
known as the Kriging system [18]:

DNCH; —t)—v=Clt—t;), i=1,....n (4.8)

More simply, in matrix form the system is

MA = b(t), (4.9)
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where M is an (n 4+ 1) x (n + 1) matrix depending only on the data locations t; and the
covariance C'(h). More precisely, M is equal to the following matrix:

C0) Oty —ty) - C(ty—t,) 1
Clty—t1)  C0) - Clty—t,) 1

M = : : : | (4.10)
Oty —t1) Cltn —t3) -~ C(0) 1
1 1 1 0

b(t) is an (n+1)-dimensional vector depending on t, the data locations t; and the covariance
C(h) and is equal to
b(t) = (C(t —t1),...,C(t —t,),1)" (4.11)

The vector A is the unknown, and is given by
A=Aty A, )l (4.12)

At first glance this may look highly inefficient because we must solve a linear system for
each location t. However, as we will demonstrate, we have to solve one system for a given
set of data values. Let us start by rewriting the estimator in vector form:

L(t) = A'd (4.13)
where d is equal to the “data” vector:
d = (dy,...,d,,0)". (4.14)
Because M is symmetric (see Equation 2.16) the estimator can be rewritten as:
L(t) = b(t) (M ™1)'d = b(t)'M~'d. (4.15)
Let y be the solution of the linear system:
My = d. (4.16)
With this new vector the estimator can be rewritten as:
L(t) = b(t)'y. (4.17)

As the system given in Equation 4.16 does not depend on the location t, this means in terms
of computer graphics that it only has to be solved at most once per frame. The dependence
on the location is now included in the expression for the estimator (Equation 4.17):

L@):ﬁéwC@—tJ (4.18)

The linear system in Equation 4.16 has a unique solution if and only if the Kriging matrix
is strictly positive definite and the data locations are mutually distinct. The first condition
is satisfied if the covariance is strictly positive definite. Because the Kriging matrix is
symmetric and positive definite, many stable numerical algorithms exist to solve the linear
system such as the Cholesky algorithm. Instability may however arise if the data locations
are very close together. One way to eliminate these instabilities is to replace a group of
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nearby data points by a single point that has a value which is then a weighted average of
the values at the previous data.

In case only the variogram is defined it is possible to obtain a similar linear system in
terms of the variogram [18]. In practice, however, one works with the pseudo-covariance
given by Equation 2.30, and solves the Kriging system for the pseudo-covariance function.
Hence the global shape can be specified using only the variogram, and in particular it can
be fractal.

If we consider a Gaussian isotropic correlation function, more precisely if

p(h) = exp(—al[h|), (4.19)

then the estimator of Equation 4.18 is an instance of Blinn’s blobbies [5]. Hence, for Gaus-
sian correlation functions, the model of the global shape can be viewed as a generalization

of a blobby.

4.2.3 Extensions

The above Kriging scheme only applies to random fields that have a constant mean (see
Equation 4.4). Many natural phenomena, however, have a mean which varies over space
or time. In the geostatistical literature this non-constant mean is referred to as a drift. In
case the drift is known, it is possible to introduce the new random variable:

Y(t) = R(t) — p(t). (4.20)

This new variable Y has the same covariance as the original random variable R and has zero
mean. Hence we can apply the above Kriging scheme to the variable Y, which produces an
estimator K'(t). The final estimator for R is then given by:

L(t) = pu(t) + K(%). (4.21)

This works well if the drift is known exactly, but unfortunately this is rarely the case in
practice. When the drift is unknown, one approach is to assume it has a “simple” form,
such as a linear combination of some simple basis functions fi(t):

k

p(t) = afi(t), (4.22)

=1

where the a; are unknown coefficients which have to be estimated as well. In three dimen-
sions, it is usual to consider quadratic drifts [18]:

(@, y,2) = a1 + azw + azy + asz + asr® + agry + arrvz + agy® + agyz + ajez’.  (4.23)

The unknowns a; now become part of the Kriging system, and the unbias condition is:

k n
E[R(t) - L) = Sy (fl(t) Y /\ifl(ti)) —0. (4.24)
=1 =1

The following equations are a sufficient condition for the above expression to vanish:

St = fi(t), I=1..k (4.25)
=1
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This constraint is k-dimensional, as opposed to the 1-dimensional constraint of Equation
4.5. Hence to solve the variational problem we now have to introduce k Lagrange multipliers
V1, ...,V This leads to the following equations (cf. Equation 4.8):

Zn:/\jC(tj —ti)—zk:wfl(ti) =C(t —t;), v=1,...,n. (4.26)
j=1 =1
As before, these equations can be written as a linear system:
MA = b(t). (4.27)
The Kriging matrix is now given by:
co) - Clti—ty) 1 faltr) --- faltr)
Ct, — ty) C(o) L folte) oo fulta)
M = 1 e 1 0 0 . 0 , (4.28)
fatr) - faltn) 00 0
and the vector b(t) is equal to
(C(t—t1),..., Ot —tn), 1, fat), ..., fr(t)), (4.29)
while the vector of unknowns is now:
A=(Ayee oy Ay =11, Vo, =1 ) (4.30)

As in the constant mean case, the matrix M is symmetric. In order for the system to have
a unique solution, we must add the constraint that the basis functions fi(t) are linearly
independent on the set of the n data points t; [18]. Using the same argument as before we
can prove that such a system has to be solved at most once per frame.

Other extensions of the Kriging scheme are mentioned in [18]. If the set of data points
gets too large, it is possible to solve several Kriging systems on subsets of the data, and
then combine the results to obtain a single estimator. This can however make the estimator
discontinuous [18]. When the random field itself is vector valued (as in modelling wind
for example) then it is possible to estimate each component at the same time, taking into
account the cross-correlations between the components. The latter estimation procedure is
referred to as coKriging. The uncertainty at the data locations can also be incorporated
into the Kriging scheme [11].

4.3 Small Scale Detail

4.3.1 Random Functions

We shall model the small scale detail by a random field R(t) with given second-order
statistics. In the spirit of Lewis’ work [24] we want a model-directed synthesis function
W (t) that approximates the desired random field. More precisely, we want to be able
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to evaluate the function at arbitrary locations in space, as opposed to random functions
generated by the spectral methods discussed in the previous chapter, that have values which
are defined only on a regular grid. The location of evaluation should be determined by the
model and not by the noise synthesis technique. For example, we may want to evaluate the
random function only near the boundary of the global smooth model. Moreover we want
the evaluation of the function to be independent of previous calculations which is not the
case, for example, in stochastic subdivision. This allows us to evaluate the random field
at different locations simultaneously, and hence permits a straightforward synthesis of the
model in parallel. Typically the function W (t) is constructed by summing more elementary
random functions at different scales (frequencies).

4.3.2 Spectral Sums

As stated in Chapter 2, random fields can be arbitrarily approximated closely by sums
of simple random functions (cf. Equation 2.41). This is the basic idea behind various
spectral sum random functions. Hence the spectral density function is used to specify the
second-order statistics of the random field. The random function W (t) is then given by:

Wi(t) = me A Wi(t). (4.31)

1=Nmin

In other terms, W is a summation of band-limited random functions W;. FEach of these
functions has a very narrow spectrum and ideally we would like all of these spectra to be
mutually disjointed. The A; together model the spectral density function, i.e.,

S(w) ~ A, a; < w < b (4.32)

for all frequencies w in the spectrum [a;, b;] of W;, that is in a neighbourhood of w;. The
bounds of the summation N, and N,,,, determine the “quality” of the random function.
The more terms we include the better the function will approximate the random field, but
the computation costs will increase as well. Thus in practice the values of these bounds are
a tradeoff between image quality and efficiency.

4.3.3 Perlin’s Noise

One of the most popular classes of random functions used in computer graphics is that
introduced in [30] by Perlin. An approximation of white noise N(t) is used as the basic
random function from which more complex functions are built. The function N(t) is an
interpolator of an ensemble of uncorrelated random values given on an integer lattice. Sev-
eral possible interpolation schemes are discussed in [24]. The interpolator has the effect of
a low-pass filter, hence the function N(t) is nearly band limited. Perlin’s function is a sum
of scaled versions of this basic noise function:

N,
max 1 .
(= > N (433)
1=Nmin
Perlin claims that this is an approximation of a fractal with spectral exponent § = 1.

Saupe in [35] on the other hand empirically determines the exponent to be § = 3. The
problem with this function lies in the spectra of the scaled versions of N. The N(2't) are
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not mutually disjointed since they all include the lower frequencies because of the “low pass’
effect of the interpolation [24]. If the resolution of the image is r, then safe choices for the
bounds of the sum are N,,;,, = log(1/r)— 1 and N4, = log(r) + 1. Therefore the number
of terms in the sum should be approximately 2 log(r).

4.3.4 Gardner’s Texture

In order to render his clouds, Gardner introduces the following texture functions [13]:
W(z,y,2)=k> Fla,y,2)>_ Fi(y,2,2) (4.34)
=1 =1
where the F; are defined by
Fi(u,v,z) = C;sin(w;u + (7/2) sin(w;_1v) + 7 sin(w; 2/2)). (4.35)

The C; are coeflicients, and the w; are characteristic frequencies. Gardner achieves “realistic
looking” pictures by choosing the following values for the C; and w;:

C; = (%) Co (4.36)

W; = ino. (437)

Gardner claims that these values produce a 1/ f fractional noise. However, a more careful
analysis shows that the spectral density function is more complicated. The series expansion
of the functions F; is actually (discarding the z argument) [4]:

Fi(u,v) = i_o: Jo(m)2)[sin(2 " wo(2u + nv)) + (=1)" sin(2  wo (2u — nv))). (4.38)

Hence Gardner’s function is an approximation of 1/f fractional noise only when v = kv,
for any integer k. Note that this function has no random component and the apparent
randomness comes entirely from the coupling of the phases in the functions Fj.

4.3.5 The Weierstrass-Mandelbrot Function

A more rigorous approximation of a fractal is given by the Weierstrass-Mandelbrot function.
This is a generalization of the “nowhere differentiable but everywhere continuous” function
of Weierstrass. An fBm with fractal parameter H is approximated by a superposition of
sinusoids with geometrically spaced frequencies [25]:

+oo
Wi(t) = Z ™ cos(r~"t 4 ¢) (4.39)
n=—oo

where the ¢, are independent and uniformly distributed over [0,27] and r is a parameter
referred to as the lacunarity parameter [41]. Berry and Lewis in [3] show that the statistics
of this random function closely approximate an fBm. Because the sum includes terms for
arbitrarily large and small frequencies, the function has no characteristic scale. As for
Perlin’s noise function, only approximately 2 log(r) terms have to be considered for visually
“good” results. This is why the Weierstrass-Mandelbrot function is preferred to a (discrete)
Fourier summation which contains the order of r terms. The storage costs are thus clearly
lower in general. The use of a periodic function other than cos(z), such as the triangle
function, give functions which are visually similar using the same number of terms.



4.3. SMALL SCALE DETAIL 29

4.3.6 Superposition of One-Dimensional Functions

Ausloos and Berman in [2] generalize the Weierstrass-Mandelbrot function to higher dimen-
sions. The most straightforward generalization is to replace the one-dimensional argument
t by the norm of the multi-dimensional argument t:

W(t) = W(t]). (4.40)

However, this does not provide a function that approximates an fBm [2], and because the
function is constant on circles (spheres) of a given radius, this produces images which are too
regular. Another approach is to consider a summation of terms of the form cos(z) cos(y).
This results in strong directional artifacts and is unsuited for random functions [24]. Instead,
Ausloos and Berman propose the following generalization to two dimensions:

M
Wi(z,y)= Z AW (amz + bny) (4.41)

m=1

where the W, are one-dimensional Weierstrass-Mandelbrot functions and (a,,b,,) spec-
ify a direction. The resulting function W, (a2 + b,y) is thus a ridge-like surface, i.e. a
one-dimensional signal dragged along a given direction. Furthermore they show that this
function is equivalent to Mandelbrot’s construction of multi-dimensional fBms [25]. This
approach can be generalized to other random functions. Let X1(%),..., Xas(¢) be an ensem-
ble of M one-dimensional random functions with given second-order statistics. Therefore a
two-dimensional random field can be defined by:

M
Wiz, y) = ApXp(anz + byy). (4.42)

m=1

The one-dimensional random functions can be generated, for example, by spectral methods
using the spectral density function as a modelling tool. Anjyo’s random functions in [1] are
very close to this formulation. The second-order statistics of W (x,y) can be determined
from the statistics of the one-dimensional functions. However, it is not clear how to choose
the statistics of the one-dimensional functions to get the desired second-order statistics of
W (z,y). Hence the function Wz, y) is not directly modelled by its second-order statistics,
but instead by its functional relation to the functions X;.

Nothing stops us from generalizing this approach to three-dimensional random fields.
For example, the 3-D function can be modelled as a superposition of one-dimensional signals
in a particular direction, or as a superposition of two-dimensional signals, or a blend of both.

4.3.7 Sparse Convolution

In Section 5 of Chapter 2 we reviewed how to generate a random field by filtering a “simple”
random field such as white noise. Lewis in [24] considers another canonical random field: the
Poisson noise process. This random field P(t) consists of a sum of impulses of uncorrelated
intensity distributed at uncorrelated locations in space:

N

P(t) =Y aid(t —t;). (4.43)

=1
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Convolving this field with a kernel A(t) synthesizes the following random function:

W(t) = g:aih(t —t)). (4.44)

As the spectral density of the Poisson process P(t) is clearly constant, the spectral density
of the resulting function W(t) is equal to the square root of the spectral density of the
convolution kernel (see Equation 2.57). The advantage of this approach is that the quality
of the noise can be controlled by varying the number of impulses t;. Lewis furthermore
discusses several techniques to speed up the computation of this function by using lookup

tables for the kernel h(t).

4.4 Stochastic Kriging

The above two models can be combined in the Kriging procedure. This technique was
first suggested by Journel in [17] under the name of conditional simulation. The procedure
has been applied to other fields thereafter by Delhomme in the Hydrosciences [11] and by
Hewett et al. in Petroleum Engineering [15] [16].

The idea behind stochastic Kriging is very simple. If R(t) is the random field we want
to simulate, and fi(t) is the estimator obtained from the Kriging system, then we can write:

R(t) = R(t)+ (R(t) - R(t)). (4.45)

In other words the unknown random field is the sum of the Kriging estimate and the Kriging
error. Unfortunately the Kriging error remains unknown because it involves the function
R(t). The solution proposed by Journel is to consider any known realization S(t) of a
random field independent of R(t) with the same covariance as the unknown random field
R(t). Since the random field S(t) is known, we can calculate the Kriging estimate S(t)
which interpolates S(t) at the user-supplied data locations. We now consider the function:

R(t) = R(t) + ((t) - $(1)) . (4.46)

In the above expression all terms are known. In practice, the function S(t) can be calculated
by using any of the techniques mentioned in the previous section. It can be shown that
the second-order statistics of the function R*(t) are indistinguishable from those of the
unknown random field R(t) [17]. In reference to the global scale, only one Kriging system
has to be solved. However, we have to add the value of the function S(t) evaluated at the
data locations to the data constraints. More explicitly, the previous data constraints (t;, d;)
become (t;,d; — 5(t;)). Let us use K (t) to denote the estimator obtained from this system.
Then our final function is given by:

R(t) = K(t) + S(t). (4.47)

Hence, this method is not more complicated than the two-scale model previously presented.
However the method has certain drawbacks. Most importantly the second-order statistics
of the global shape and the small-scale detail have to be identical. This works when one
is dealing with fractals which have no characteristic scale [15] [16]. In computer graphics,
however, we can sacrifice rigour for modelling power by allowing the small scale detail
function S(t) to have any second-order statistics. Furthermore we can add a parameter A
which controls the amount of small scale noise added:

R(t) = K(t) + AS(t). (4.48)
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4.5 Possible Extensions

In this section we will discuss possible extensions of the model to more than two scales. Let
us assume that we want L different scales. Then, the phenomenon will be modelled by a
random field given by a sum of random fields R; at the different scales:

L
R(t) =) Ri(t). (4.49)
=1

Fach random field is specified by its second-order statistics and (for some levels) by user-
supplied data. The user thus has control over a wide range of scales. It is however unclear
how the user would specify this data. One possibility is a top-down design process. At first
the user specifies the shape of the the largest scale by providing a set of data values. He or
she then views a display of the interpolated shape (obtained by the Kriging procedure), and
starts to work on the next scale level by specifying refinements of the previously-computed
shape. From these refinements, the function R is calculated. Of course the statistics of Ry
should not interfere with those of Ry. After this step the user views the sum of both fields
and starts refining it for the next scale level to produce Rz and so on. At each level a certain
amount of noise can be added to add more complexity to the model. This is generated in
the same way as the small-scale detail of the two-scale model is generated by providing a
random function Wj at each level, with specified second-order statistics.

At present it is still unclear how this design process can be formalized. Similar multi-
scale models have already been developed in other fields, however. In low-level vision,
Szeliski [38] presents several models to separate an image into different scales of descrip-
tion. The techniques he uses cost too much in memory requirements for three-dimensional
phenomena. In image compression, Burt and Adelson [9] present a way to compress images
more efficiently by building a multi-scale representation of the image. This approach has
many attractive features which make it a candidate for a multiple-scale model in computer
graphics. A similar approach has been proposed in computer graphics by Williams [42] to
encode a texture at different scales.

A formalization of the procedure might be in terms of a hierarchy of Kriging systems
at each level. The technical details remain to be worked out, however. Furthermore, as
the distances between the data points decrease at each level, one has to be careful about
numerical instabilities which may arise. Another difficulty is the increase in the number of
data points at each level. This could be resolved by solving several Kriging systems and
then combining the resulting estimators.
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Chapter 5

Application of the Model to
Clouds

I truly do want to know how to describe clouds. But to say there’s
a piece over here with that much density, and next to it a piece
with this much density — to accumulate that much detailed
information, I think is wrong. It’s certainly not how a human being

perceives those things, and it’s not how an artist perceives them.
Mutchell Fergenbaum

In this chapter we will provide a specific example of application of our model to nat-
ural phenomena: the modelling of clouds. The previous chapters dealt primarily with the
modelling of phenomena; in this chapter we will consider the rendering process as well.

Clouds are a typical example of partially translucent phenomena. As well, the visual
simulation of clouds is important in many applications. One such application is flight-
simulation. We will model clouds as an ellipsoidal random field with two characteristic
scales. In the next section we will review some visual properties and terminology of clouds.
In the subsequent sections we will discuss various rendering techniques. We will begin with
a brief review of the theory of radiative transfer, which is the physical theory of how light
is distributed within a cloud. Several simple models will then be reviewed. A section will
be devoted to the ray-tracing of the global shape, which is similar to ray-tracing blobbies.

5.1 Observed Properties of Clouds

A vast amount of literature deals with the visual properties of clouds. This research was
initiated by the work of the British pharmacist Luke Howard in 1803. Howard classified
clouds into four major types: cumulus (cauliflower type clouds, which have vertical devel-
opment), stratus (clouds in flat appearing layers), cirrus (fibrous or hair-like), and nimbus
(rain clouds). Of course, some real clouds are hybrids, such as the cumulo-nimbus clouds
which can be observed during thunder-storms.

Basically, cloud phenomena have three distinct scales [32]: the masoscale describes
clouds of the range of 1000 km and up (the cloud patterns viewed from a satellite for
example), the mesoscale includes clouds ranging from a few kilometres to several hundred
kilometres. In this range are the clouds listed in Howard’s taxonomy. The smallest scale is
the microscale which describes cloud phenomena on a scale smaller than 1 km (for example
the cloud “puffs”, the turrets on cumulus clouds and other small scale irregularities).

Recently Cahalan [10] has proposed a multi-scale fractal model to simulate clouds. The
model is used to recover the density distribution of clouds from experimental data. He
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considers a two-scale model. The large scale models the distribution of isolated clouds
within cloud clusters. The small scale describes the characteristics of an isolated cloud.
Each scale is modelled as an fBm with a spectral exponent 3 that is estimated from the
experimental data obtained by satellites.

5.2 The Scattering Equation

The rendering of a cloud as an ensemble of particles can be solved (in theory) by using the
equations of radiative transfer [22]. The quantity calculated in a scattering problem is the
radiance 1(x,s) at a given position x emitted in the direction given by the solid angle s.
The phase function p(x,s,s’) characterizes the scattering in direction s of radiance arriving
from the direction s’ at location x. The phase function is normalized by:

/ p(x,s,s')ds’ = 4r. (5.1)
lls’lI=1

The total amount of radiance emanating from a particular direction s at a location x is
given by the source function:
a(x
J(x,8) = L/ p(x,s,s)I(x,s') ds’ + Js(x,s). (5.2)
A Jjsl=1

The function a(x) is the albedo of the cloud at location x. The function J4(x,s) is a term
which accounts for internal and/or external sources of radiation. The radiance I can be
calculated from the scattering equation [22]:

s- Vxl(x,s)= —o(x)[{(x,s) — J(x,s)] (5.3)

with some boundary conditions. The function o, is the extinction coefficient and is equal
to

Oe(x) = 04(x) + 04(x) (5.4)

where o, is the absorption coefficient and o, is the scattering coefficient. The scattering
equation states that the variation of the radiation in direction s is simply the difference
between the emitted radiance and the absorbed radiance. This equation can only be solved
in practice in particularly simple cases where the dimensionality of the radiance I is low-
ered. Furthermore, the radiance function (if calculated) provides too much information for
computer graphics. We are not interested in the intensity values of the centre of a cloud,
since we cannot see such points. In many cases it is assumed that the cloud is isotropic.
More precisely, if the phase function only depends on the angle 8 between the two directions
s and s”:

p(x,s,s’) = p(x, cosb). (5.5)

5.3 Low Albedo Approximation

Blinn [6] and Kajiva and Von Herzen [20] present algorithms to ray-trace volume densities
with a low albedo. This means that multiple scattering within the cloud, i.e. particles
illuminating other particles of the cloud, are ignored. First the cloud is modelled as a
density map p(x). The phase function is then rewritten as:

p(x,cos8) = p(x)p(cosh). (5.6)
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Figure 5.1: Low Albedo Approximation

Assuming we consider only the radiance coming from the line (z(t),y(t), 2(t)), then the
scattering equation with the low albedo approximation becomes:

%I(w(t), y(1), 2(1)) = —aep(e(t), y(1), (1) 1(x(1), y(1), 2(1)). (5.7)

This has solution of
116 = ) exp (= [ pla(r)ptr) (7)) 7). (5.5

i.e., a simple exponential decay. The algorithm to ray-trace clouds is based on this expo-
nential decay [20]. Let us assume that we have L light sources. We first consider a point
x(t) on the ray within the cloud. The amount of light reaching x(¢) from a light source 7 is
then given by:

Ai(t) = Ajexp (—O‘e /,0(7') dr) . (5.9)

The integral is over a line segment from x(?) to the location of light source ¢ and A; is
the intensity of the light source. The particles on a portion dt of the ray contribute the
following amount to the final illumination value:

Al = Ai()osp(x(1))p(cosBi(t)) exp <—ae / tp(x(r))dr) dr, (5.10)

where 6;(¢) is the angle between the ray and the segment from x(t) to the light source .
The final intensity I is then given by summing over all light sources and contributions dI;:

L b b
I= Z dl; + Iyacr exp (—O‘e/ p(x(1)) dt) . (5.11)

i=17%
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The intensity Ipgt is the light coming from behind the cloud. The bounds of the integral a
and b are given by the intersection of the ray with a volume bounding the cloud. See Figure
5.1 for a better understanding of the terms in the above equation. As noted in [20] the values
A;(t) can be interpolated from a precomputed table of values at discrete locations of space.
Blinn was able to solve the integrals involved analytically because of the simple geometry of
his clouds. In the general case, however, these integrals can become very expensive. Sakas
[34] ray-traces density maps given as a voxel data base. The integrals are then evaluated
using voxel traversal algorithms. This method can also account for self-shadowing effects
which are especially important in the case of thick cumulus clouds by shooting additional
rays. However, as noted [20] this can result in pictures which are overly obscured because
the self-scattering effect is neglected (due to the low albedo assumption).

5.4 The Rendering Algorithm

We will now introduce the rendering algorithm which takes advantage of the double-scale
model presented in this thesis. The rendering algorithm dealt with in the previous section
suffers mainly from an inability to account for self-shadowing and self-scattering effects,
which are semi-global. In the following algorithm these effects are accounted for by using
the geometry of the global shape of the model. Furthermore, by having analytic expressions
for the density map we can write special code to solve the integrals. An analytic solution is
not possible because of the addition of noise. It is also possible to model the translucence
of the cloud by using a modification of Gardner’s algorithm [13]. The general outline of the
algorithm is as follows:

For each ray do
(1) Calculate intersection point with isosurface of global shape
(2) If no intersection then next ray
(3) Calculate normal at intersection point
(4) Use normal to calculate self-shadowing
(5) Determine brightness and translucence of the cloud
Next ray

In the next sections we will describe the intersection step (1) more carefully and give a
simple algorithm based on Gardner’s work for step (5).

5.5 Ray Tracing Blobbies

The intersection step of a ray and a blobby will now be described in more detail. Rather
than use Blinn’s algorithm [5], we will use instead interval arithmetic [28]. Since we have
assumed that the random field defining the global shape is ellipsoidal, the estimator given
by the Kriging system will have the following form:

L(t) = Zn: 7 C((t—£)'Qi(t — t,)). (5.12)

The matrices Q; will be as defined in section 2.2.2. The blobby will then be defined as an
isosurface of this function:

Lt)=T =0 (5.13)
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where T is a given threshold.
When calculating the intersection of a ray R(t) and the blobby, first we transform the
ray to its canonical form

R(t) = (0,0,1) (5.14)
To find the intersection we substitute R(t) into L(t) to get:

99(15) = Zn:yZC(CZ + bi(t — Zi) + ai(t — Zi)z) (5.15)

where a;, b; and ¢; are given by the coefficients of Q; and the components of the locations
t;. The intersection points of the ray with the blobby are given by the roots of the equation:

o(t) =T = 0. (5.16)

To find these intersections we first compute a set of intervals. Each interval contains
exactly one root. This is done by interval arithmetic. Then a standard root finder is applied
to each interval which is guaranteed to converge because the interval only contains a single
root. An example of such root finding algorithm is the well-known Newton iteration. Now
we will describe how interval arithmetic is applied to this particular problem.

Interval arithmetic is an extension of standard arithmetic to intervals. In other words we
define operations (such as addition and multiplication) on intervals. We make the following
definitions:

[0, 8]+ [erd] = [0+ ¢,b+
[a,b] = [ca,cb] if ¢ >0
cla,b] = [eb,ca] if ¢ <0
exp([a, b]) = [exp(a), exp(b)]

C

More generally, for any non-decreasing function f(z) and non-increasing function g(z) we
must

f(la,b]) = [f(a), f(D)] (5.21)
9([a,0]) = [9(b), g(a)] (5.22)

In the case of non-monotonic functions the definition is less straightforward and we have to
know all the local extrema of the function in advance in order to identify the intervals on
which the function is monotonic. A specific example will be given later.

We are searching for intervals [t1, %3] such that T € ¢([t1,?2]) (the interval contains a
root) and the derivative ¢'([t1,13]) does not contain 0 (the function is monotonic in the
interval). These two facts imply that the interval contains a single root. The following
algorithm starts with an initial interval [¢1, 7] (provided for example by some bounding box
heuristics), and then proceeds by recursively subdividing the interval in two. The intervals
are contained in the set I at the end of the algorithm. More explicitly:
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I:=0
miss := TRUFE
Algorithm Isolate([t1,t3])
if T' & p([t1,12]) then
return
if [ty — 1] < € then
1= 10 {[t1.13))
miss := FALSFE
return
if 0 € ©([t1,1t2]) then
if (¢(t1) —T)(¢(t2) — 1) < 0 then
I:=TU{[t1, 1]}
miss := FALSFE
return
to == (t +12)/2
Isolate([t1, o))
Isolate([to, t2])
return
end

We now consider an explicit example where the covariance function is Gaussian, i.e. of
the form:

C(t) = exp(—at?). (5.23)

From Equations 5.17, 5.18 and 5.19, we know how to calculate weighted sums of intervals.
More precisely, if we assume that the coefficients 7; are positive, then

Al ta]) = Y il o)) (5.21)

Therefore we need only show how to compute the functions f;, which are given explicitly
by:

F(t) = fi(t) = exp(—a(c+b(t — z) + a(t — 2)*)) (5.25)

See Figure 5.2 for a plot of this function. Let the interval to be evaluated be [t1,7]. If

f(t1) > f(tz) then we swap the values of {1 and ¢;. The function has a unique maximum at

tmaz = 2z — b/(2a). Therefore if the interval [t1, ;] contains ¢4, then we set the resulting
interval to:

[F(t1): f(tmae)] = [f(11), f(e = b7/ (4a))]. (5.26)
If not, the function f(¢) is monotonic between t; and ¢z, and we simply return:
[f(t1), f(12)]- (5.27)

The evaluation of the derivative ¢'(t) is a bit more complicated. As above it is sufficient
to show the calculation only for a single term of the sum:

J(t) = —a(b+2a(t — 2)) f(1) (5.28)

See Figure 5.3 for a plot of this function. This function has a minimum and a maximum at

the following points:
b 1
ty =2 — — + ——. 5.29
= 2a 2a0 ( )



5.5. RAY TRACING BLOBBIES

Figure 5.2: The Correlation Function

Figure 5.3: Derivative of the Correlation Function
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Then as before we check to see if the input interval contains any of the extrema, and we
return specific values accordingly:

A= f(ty)

B = [(l2)

if A > B then
swap the values of A and B

end if

if t_ € [t1,t2] then
B=fit)

end if

if t_|_ € [tl,tz] then
A= f(ty)

end if

The resulting interval is then given by [A, B]. A safety trick to avoid problems caused
by numerical imprecision is to make the resulting intervals slightly larger than given by the
above algorithms, for example by an amount e.

5.6 A Simple Illumination Model

In this section we will present an illumination model which is similar to Gardner’s textured
ellipsoids algorithm [13]. We assume that we already have the nearest intersection point P
of the ray and the blobby, and the normal N at that point. From these values a “classic”
illumination value I ;445 can be calculated (for example using Phong’s model). This value
will be used to account for the the brightness and the self-shadowing effects of the cloud.
The translucence is obtained from the small scale detail function W (t), which is used as
a (solid) texture. The texture value is given by t = W(P). This value is compared to a
threshold T which is a function of the distance d traversed by the ray through the cloud and
the cosine p of the angle between the viewing vector and the normal N. Both a threshold
Ty at the “boundary” of the cloud (typically very high) and a threshold 75 at the “centre”
of the cloud (typically very low) are defined. The threshold 7T is then interpolated from
these two values as follows:

T =Ty + (Ty — Ty) exp(—Bdu?) (5.30)

where 3 is a user specified parameter which influences the “fuzziness” of the cloud’s “edge”.
The final texture is then set to:

to = max(0,v(t,1)) (5.31)
where v is some normalization function, which in our implementation was set to
v(t,Ty=0-T)/(1=-T). (5.32)

If Iyqcr is the illumination coming from behind the cloud, then the final illumination is given
by
1= tOIclassic + (1 - tO) eXp(_ﬁduz)Iback- (533)

Note that this illumination model is not based on the physical equations of radiative
transfer theory. It was designed simply to give visually good results.



Chapter 6

Results

In this chapter we will demonstrate the power of our two-scale model with some actual
examples. The next section will describe the different options in the modelling process
using our model. The second section will present the actual implementation of the simple
illumination model for the three-dimensional cloud model.

6.1 The Modelling Process

For the sake of clarity we will only consider two-dimensional phenomena in this section.
The images can, for example, represent thin (plane parallel) cloud layers. The goal in this
section is not to portray realistic pictures, but rather to exhibit the flexibility of our model.

6.1.1 Specification of the Global Shape

In the first stage of the modelling process the user specifies a set of values at data points.
This way she or he roughly sketches the shape of the phenomenon. Figure 6.1 shows a
set of values which are magnified for more clarity. The exact shape of the globally smooth
model now depends on the choice of the correlation function. We will now exhibit images
for different correlation functions. First we consider the case of an isotropic Gaussian
correlation function:

plz,y) = exp (—a(w2 + y2)) . (6.1)

The parameter a determines the range of the correlation: high values mean almost no
correlation between the data points and low values mean a high correlation between the
points. Figures 6.1, 6.2 and 6.3 show images synthesized for different values of o along with
a plot of the corresponding correlation function. The isotropy of the correlation function is
clearly visible. To introduce anisotropies, the user can work with an ellipsoidal correlation
function by specifying a “stretch” or a “squeeze” along two directions (axes of the ellipse).
Figure 6.4 shows the result of stretching in the y-direction by two. The contour lines of the
corresponding plot are now clearly ellipses.

Further anisotropies can be introduced by using correlation functions which do not
depend on the distance z? 4 y? only. For example, we can study the effect of letting the
correlation oscillate along the y-direction. This can be achieved, for example, with the
following correlation function:

(1 + cos(fBy)). (6.2)

N | —

p(z,y) = exp (—a(a? + y?))
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Figure 6.1: Isotropic Gaussian Correlation Function with oo =5

Figure 6.2: Isotropic Gaussian Correlation Function with o = 0.1
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Figure 6.3: Isotropic Gaussian Correlation Function with oo = 0.01

Figure 6.4: Ellipsoidal Gaussian Correlation Function with o = 0.06
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Figure 6.5: Oscillated Gaussian Correlation Function with a = 0.1 and § =4

Figure 6.6: Oscillated Gaussian Correlation Function with o = 0.05 and 3 = 2
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Figure 6.7: Singular Correlation Function with @ = 0.5

The effect of parameter « is the same, and the second parameter § determines the size of
the oscillations. The influence of these parameters is illustrated by Figures 6.5 and 6.6. We
can observe the strong anisotropies from the plots of the correlation function.

The Gaussian is not the only possible correlation function. In general we want functions
which decay with distance, and which are nearly zero after some given distance. Another
function having these properties is the inverse power function:

plz,y) = — (6.3)

- 1_|_($2 _I_yQ)a'
Figures 6.7 and 6.8 show resulting images. For low values of the parameter a, the radius
of influence seems to be too big and there are noticeable singularities at the data points.
For large values of a the functions drops off too rapidly, and we get a result similar to the
image of Figure 6.1.

In all the examples, the phenomenon was constrained to take the same value of 1.0 at the
data points. Hence theoretically the “best” interpolator must be the constant function equal
to 1.0. This results in a totally blank image! One possible way to force the phenomenon
to be zero “far-away” from the data points is to constrain the phenomenon to be zero at a
unique data location distant from the data.

6.1.2 Specification of the Small Scale Detail

As stated in Chapter 4 the user has to specify the small scale detail by the second-order
statistics of a random function. In most cases these second-order statistics are estimated
from actual samples of the phenomenon. However, he or she has the freedom to create any
valid correlation or spectral density function. Figure 6.9 shows an image of a phenomenon
where small scale has been added using the stochastic Kriging technique described in Section
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Figure 6.8: Singular Gaussian Correlation Function with ¢ = 2.5

Figure 6.9: Addition of the Small-Scale Detail using Stochastic Kriging
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Figure 6.10: 2-D Weierstrass-Mandelbrot function with M = 4 and 8

4 of Chapter 4. The small-scale noise for that image is a random function having an isotropic
Markovian correlation function:

p(2,y) = exp (-m/x? n y2) . (6.4)

The global shape is constrained by the same data constraints of the previous section, with
an isotropic Gaussian correlation function with a = 0.04. This small-scale was synthesized
using an FFT spectral model described in Section 3.1. The problem with the stochastic
Kriging approach is that small-scale detail may also appear far away from the boundary of
the global shape of the phenomenon. One solution is to let this small-scale decay with the
distance from the global shape. Techniques similar to those described in the simple illumi-
nation model of the previous chapter could be used. In the next section more convincing
results involving the small-scale detail will be presented.

Several of the random functions discussed in Section 4.3 have been tried. Examples
of random samples using Perlin’s function can be found in many references in computer
graphics (e.g. in [30]). The two-dimensional Weierstrass-Mandelbrot function, however,
has not received much attention in computer graphics. Figures 6.10 and 6.11 show four
samples of a fractal random field with different values of M. Recall that M is the number
of one-dimensional Weierstrass-Mandelbrot functions which are superposed. For the first
two images (i.e. M = 4 and 8), the directional artifacts (ridges) are clearly visible. Even in
the last image with M = 32 some artifacts are still visible. It seems that unless one wants
these strong directionalities, the multi-dimensional Weierstrass-Mandelbrot function needs
too many superpositions to generate artifact-free pictures.



48 CHAPTER 6. RESULTS

Figure 6.11: 2-D Weierstrass-Mandelbrot function with M = 16 and 32

6.2 Three-Dimensional Clouds

In this section we will present results of our model applied to the simulation of three-
dimensional clouds. The illumination model used was described in the previous chapter.
This illumination model has been directly implemented in a standard ray-tracer; i.e Optik,
a ray-tracer developed at the University of Toronto by Amanatides and Woo. The global
shape is given by the set of data points and coeflicients of the Kriging estimator. This
supposes that the modelling was done in a prior stage, in other words another program
reads the input data supplied by the user and calculates the coeflicients of the Kriging
estimate and stores them in a format understandable by Optik.

Figures 6.12, 6.13 and 6.14 are images of the global shape with different correlation
functions. The user supplied data is represented by small red spheres. To give a depth clue
the spheres gradually become faded the farther they are from the viewer. These images are
reminiscent of Blinn’s blobbies. The isotropic Gaussian correlation function is used. The
details of the rendering of these images was covered in Section 5.5.

The addition of small-scale detail using the simple illumination model is illustrated in
Figures 6.15, 6.16, 6.17 and 6.18. We used Perlin’s function to generate the small-scale
detail. This is equivalent to assuming that the small-scale is “fractal-like” (see Section
4.3.3). The noticeable differences in the four images come from different scaling values of
Perlin’s noise.

We will now experiment with an elliptical correlation function for the global shape
model. Figure 6.19 shows an example of the global shape using such a correlation function.
The shape of the ellipsoids varies as a function of the height of the cloud. The ellipsoids
are “flatter” near the bottom of the cloud. This permits us to simulate the behaviour
of cumulus type clouds observed in the sky. Figure 6.20 shows the result of adding the
small-scale detail to this model.
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Figure 6.12: Image of global shape 1

Figure 6.13: Image of global shape 2
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Figure 6.14: Image of global shape 3

Figure 6.15: Addition of small-scale detail 1
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Figure 6.16: Addition of small scale detail 2

Figure 6.17: Addition of small-scale detail 3
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Figure 6.18: Addition of small-scale detail 4

Figure 6.19: Global shape with elliptical correlation function
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Figure 6.20: Addition of small-scale detail to previous elliptical model

In the above images certain artifacts caused by the simplicity of the illumination model
are visible. For example, the fuzzy regions at the boundary of the cloud are all very small.
Some clouds, however, show big fuzzy “wisps”, typically at the tops of clouds. These effects
can be modelled by adding more parameters to our simple illumination model, or to use more
sophisticated volume rendering approaches based on the algorithm presented in Section 5.3.
In both illumination models, however, the availability of the global shape is crucial in
the simulation of semi-global illumination effects such as self-shadowing. This means that
the user could specify one of the possible rendering techniques necessary to determine the
translucence of the cloud at the intersection point. This choice is then a trade-off between
image quality and computation time. For example, the simple illumination model could be
used to “preview” the scene for modelling purposes.

All pictures have a resolution of 512 x 512 pixels and were rendered on Iris 4D worksta-
tions. The rendering of the global shape took approximately 20 to 30 minutes. With the
addition of the small-scale detail rendering times took approximately one hour. Note that
there has been no attempt to optimize the code, as clarity and correctness were our first
concerns. To solve the Kriging system a simple LR decomposition routine of linpack was
used.
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Chapter 7

Conclusion

The main contribution of this thesis was to introduce a new stochastic model to computer
graphics. Unlike previous models, it overcomes the high storage requirements in the case of
three-dimensional phenomena without sacrificing user control. This is achieved by consid-
ering a model that operates on two or more scales of visual detail.

At the macroscopic level, the shape is given as an interpolator of user supplied data.
Since we interpret the interpolation as an estimation problem, the interpolator is controlled
by a correlation measure. By necessitating that the estimator is unbiased and has minimal
variance, an optimal estimator is calculated. The technique used is called Kriging. This
technique requires the solution of one linear system with a size equal to the number of data
constraints. This estimator has low storage requirements because it is a weighted sum of the
correlation measure at different locations. At the microscopic level, the small-scale detail
is modelled by a solid texture. This texture is modelled by a random function which can
be evaluated anywhere in 3-space and is given by a small number of coeflicients. A good
example is Perlin’s noise function [30]. Our model has low storage requirements because of
the simple form of the estimator and the choice of small-scale random function. In addition
our model allows the user to have control over the shape of the phenomenon as a result of
the interpolation at the global scale.

The feasibility of our model was demonstrated by applying it to the simulation of clouds.
Clouds are modelled as density maps. At the rendering level we took full advantage of
the separation of scales. The global shape is used to calculate semi-global illumination
effects, such as self-shadowing. We considered two different rendering algorithms to add the
translucence. The first algorithm generalized the heuristics first introduced by Gardner [13].
It has the advantage of being simple and suitable for implementation in a standard renderer.
The second algorithm is more expensive because it uses volume rendering techniques.

The first algorithm was implemented and the results that were shown in chapter 6
demonstrate that our model is well suited for the rendering of three-dimensional partially-
translucent phenomena such as clouds.

The extension of the model from two-scales to more scales of visual detail was mentioned
in Chapter 4, however the procedure still remains to be formalized in a rigorous mathemati-
cal framework. To achieve this, certain models from low-level vision and image compression
could be used. The technique of stochastic Kriging as presented in chapter 4 needs certain
modifications to be more useful in computer graphics. The addition of noise should only be
concentrated near the global shape and the use of different correlation measures at different
scales should be allowed.
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The rendering of the model can be improved in different ways. For example, heuristic
rendering algorithms other than Gardner’s could be designed. As well, although the more
expensive volume rendering technique was described in detail in Chapter 5, it remains to
be implemented to assess its true advantages.

An interesting area of future research might be to apply the above model to other
natural phenomena. Of special interest would be those which have not yet been simulated
by previous models because of high storage requirements. The first step would be to apply
the model to partially-translucent phenomena different from clouds. An example would
be fire. A more ambitious goal would be to try to model water or other fluids using the
same model. In particular it would be exciting to incorporate the dimension of time in our
random functions. This would permit us to simulate complex dynamic behaviour which
is presently beyond purely deterministic models. Furthermore, the temporal correlation
function could be used to speed up the rendering of subsequent frames in an animation.
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