
On the Velocity of an Implicit Surface
JOS STAM and RYAN SCHMIDT
Autodesk Research

In this paper we derive an equation for the velocity of an arbitrary time-
evolving implicit surface. Strictly speaking only the normal component of
the velocity is unambiguously defined. This is because an implicit surface
does not have a unique parametrization. However, by enforcing a constraint
on the evolution of the normal field we obtain a unique tangential compo-
nent. We apply our formulas to surface tracking and to the problem of com-
puting velocity vectors of a motion blurred blobby surface. Other possible
applications are mentioned at the end of the paper.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling; I.3.6 [Computer Graphics]:
Methodology and Techniques

General Terms: Implicit surfaces, Blobbies, motion blur

Additional Key Words and Phrases: Implicit surfaces, Blobbies, motion blur

ACM Reference Format:
Stam, J., and Schmidt, R. 2011. On the Velocity of an Implicit Surface.
ACM Trans. Graph. XX, Y, Article ZZZ (Month 2010), NN pages.
DOI = 10.1145/1559755.1559763
http://doi.acm.org/10.1145/1559755.1559763

1. INTRODUCTION

Implicit surfaces are defined as the iso-contour of a smooth func-
tion. This paper addresses what happens to the surface when that
function varies over time. Specifically we are interested in the ve-
locities of the points on the surface. Strictly speaking it only makes
sense to talk about the normal component of the velocity along the
gradient of the implicit function. This is because implicit surfaces
admit many parametrizations which are not fixed by the implicit
function. To understand this imagine rotating all the points lying
on an implicit sphere by a fixed amount as shown in Figure 1. Each
point will have a tangential velocity despite the fact that the sphere
appears at rest. However, intuitively we know that if we sample the
implicit surface, these points will have a definite velocity. For ex-

Authors’ addresses: J. Stam and R. Schmidt, Autodesk, Inc., 210
King Street East, Toronto, Ontario, Canada, M5A 1J7; e-mail:
Jos.Stam@autodesk.com, rms@dgp.toronto.edu.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/11-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

ample, if we translate a sphere by a constant velocity, then each
point of the surface will also move at this velocity. To fix the tan-
gential velocity we need to impose another condition on the motion
of these particles. In this paper we propose that the normalized gra-
dient field should not change over time. This is indeed the case
when the implicit surface undergoes a translational motion.

This work was initially motivated by the problem of motion blur-
ring iso-surface meshes of a particle simulation. However, in es-
timating the tangential velocity we have also addressed the more
general problem of predicting where a point on a time-varying im-
plicit surface will move to in the next frame. With this building
block we can more accurately track an animated implicit surface
with a mesh or set of particles, rather than generating a new mesh
at every frame. Similarly, surface properties like color or texture
coordinates can be more easily and accurately propagated, improv-
ing frame coherence. We work out all the mathematical expressions
for the surface velocity of a blobby surface, and show applications
to surface tracking and motion blur. These results demonstrate that
although our formula assumes translational motion, with moderate
timesteps it performs well for other motion types.

2. RELATED WORK

We are not aware of any previous work addressing the problem of
defining tangential components of surface velocity fields for time-
varying implicit surfaces. A condition on the evolution of the nor-
mal field similar to ours was used by Mullan et al. to model implicit
surfaces using radial basis functions [Mullan et al. 2004].

One of the primary benefits of an accurate velocity field is that it
greatly simplifies the task of tracking the implicit surface with par-
ticles. In [Smets-Solanes 1996] a velocity field is explicitely spec-
ified along with the implicit surface. Surface tracking is common
practice in level set simulation [Enright et al. 2002], where an ex-
isting velocity field drives the simulation. If a velocity field is not
known a priori, the state-of-the-art approach [Witkin and Heckbert
1994; Rodrian and Moock 1996] is to use the well-known nor-
mal velocity at each particle. If the underlying motion has a tan-
gential component, then under normal flow the particles will be-
come unevenly distributed, and so some geometric energy must
also be minimized to redistribute the particles. As normal flow can
rapidly introduce large variations in sampling density, the cost of
robustly minimizing these nonlinear energies is significant [Meyer
et al. 2007]. With a tangential velocity estimate, the particles will
more accurately track the actual surface motion and significantly
less “massaging” will be necessary to ensure adequate particle dis-
tribution.

Fig. 1. Rotating the sphere does not change its implicit shape.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • J. Stam and R. Schmidt

If the particles are connected with mesh topology, the edge graph
must be adapted to deal with any topological splits and merges, as
well as to handle degeneracies, foldovers, and so on [Bouthors and
Nesme 2007; Brochu and Bridson 2009]. These issues are outside
the scope of our work, but we do note that improvements in parti-
cle tracking generally reduce the number of “events” that the mesh
adaptation algorithm needs to handle.

3. NORMAL VELOCITY

A time evolving implicit surface is defined by a function F whose
parameters change over time. More formally the surface is defined
by the following set:

Γ(t) = {x|F (x, t) = 0}.

Information on the velocity of the points on the surface can be ob-
tained by computing the time derivative of the implicit function:

Ḟ (x, t) =
∂F

∂t
(x, t) +∇F (x, t)T ẋ(t).

For points on the surface this derivative has to be zero. Therefore
we have that:

∇F (x, t)T ẋ(t) = −∂F
∂t

(x, t).

Or more succinctly:

qT ẋ(t) = u.

This equation can be solved using the pseudo inverse (see [Moore
1920]) of q, namely q+ = qT /qTq, so that:

ẋ(t) =
u

qTq
q = vn n, (1)

where n = q/|q| is the normalized gradient and

vn =
u

|q|
.

Equation 1 provides only partial information on the velocity, only
its variation in the direction of the gradient q. The tangential com-
ponent can be arbitrary since motion within the surface does not
change the shape. This reflects the fact that an implicit surface does
not have a unique parametrization.

4. TANGENTIAL VELOCITY

One obvious choice for the tangent velocity is to simply set it to
zero. However, this doesn’t work in the example of a sphere moving
at constant speed. As shown in Figure 2 the velocity field at the
surface does not match the constant velocity, only for points whose
normal is aligned with the velocity. This does not mean that the
points leave the surface, it means that they will be bunched up at
the poles. In general this is not desirable. What we propose in this
paper is to require that the normal at each point does not vary over
time. For translational motions this is clearly the case. Again we
emphasize that in theory any tangent can be chosen. Our goal is
to chose one that is close to the hypothetical motion of a surface
particle and which is exact for translational motions.

Mathematically our condition states that the time derivative of
the normalized gradient should vanish on the surface:

d

dt

(
∇F
|∇F |

)
= 0. (2)

Fig. 2. Normal Velocity of a translating sphere.

To compute this derivative we use the fact that the derivative “D”
of a normalized vector n = ∇F/|∇F | is the projection of the
derivative onto the plane normal to the vector. More precisely:

D n =
1

|∇F |
Pn D ∇F, (3)

where Pn is the projection operator to the plane normal to the vec-
tor n:

Pn = I3 − nnT ,

where I3 is the 3 × 3 identity matrix. Similar to the case of the
normal velocity, we have that the (total) time derivative is equal to
two terms:

d

dt

(
∇F
|∇F |

)
=

∂

∂t

(
∇F
|∇F |

)
+∇

(
∇F
|∇F |

)
ẋ.

Using Eq. 3 we can compute the two terms in this equation as fol-
lows:

∂

∂t

(
∇F
|∇F |

)
=

1

|∇F |
Pn

∂

∂t
∇F

∇
(
∇F
|∇F |

)
=

1

|∇F |
Pn ∇∇TF.

Using these results we have that:

d

dt

(
∇F
|∇F |

)
=

1

|∇F |
Pn

(
∂

∂t
∇F +∇∇TF ẋ

)
.

So that solving Eq. 2 gives the following equation for the tangential
component of the velocity:

PnHF ẋ = −Pn
∂

∂t
∇F, (4)

where HF = ∇∇TF is the Hessian of the implicit function F .

5. EXAMPLE: MOVING BLOBS

In this section we use the derived formulas to compute the velocity
of a blobby surface whose motion is given by the velocity of the
center of each blob. These surfaces were first introduced in [Blinn
1982]. They are a popular way to visualize particle systems such as
the output of a liquid simulator. More precisely the implicit field is
defined as follows:

F (x, t) =

n∑
i=1

wi f(|x− xi(t)|/σi)− T,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

On the Velocity of an Implicit Surface • 3

where the wi are weights, the σi are radii, T is a threshold value
and the function f(r) is a smooth function equal to one at the origin
and zero at one and beyond. For example one can use:

f(r) = (1− r2)3 and f ′(r) = −6(1− r2)2 r.

We have:

u = −∂F
∂t

(x, t)

= −6

n∑
i=1

wi

σi

(1− r2i)2 ri
(x− xi(t))

T

|x− xi(t)|
ẋi(t)

= −6

n∑
i=1

wi

σ2
i

(1− r2i)2(x− xi(t))
T ẋi(t),

where ri = |x− xi(t)|/σi. Similarly,

q = ∇F (x, t) = −6

n∑
i=1

wi

σ2
i

(1− r2i)2 (x− xi(t)).

We now have all the ingredients to compute the normal velocity
(Eq. 1).

Now let’s work out the math for the tangential velocity. In the
calculations below we always drop any expressions that are in the
direction of n as they will be projected out, to simplify a lot of
expressions. First we have that

PnHF = −Pn 6

n∑
i=1

wi

σ2
i

(1− r2i)2 I3.

Similarly,

Pn
∂

∂t
∇F = Pn 6

n∑
i=1

wi

σ2
i

(1− r2i)2 ẋi.

And therefore we get that:

Pnẋ = Pn
1

W

n∑
i=1

wi

σ2
i

(1− r2i)2 ẋi,

where

W =

n∑
i=1

wi

σ2
i

(1− r2i)2.

The tangent velocity is thus the weighted average of the pro-
jected velocities at the blob centers. However, in general the veloc-
ity (including the normal component) is not equal to the a simple
weighting of the blob’s velocities, which would seem like an obvi-
ous solution. To see that this is a poor choice consider the case of
two blobs moving towards each other as shown in Figure 3. A sim-
ple weighting of the blob’s velocities would result in a zero surface
velocity in the center. However, clearly this velocity is non-zero as
the surface is expanding there when the two blobs move towards
each other. Our approach on the other hand predicts a more accu-
rate velocity as we only use the weighted average for the tangential
velocity component, while Eq. 1 gives us the non-zero normal ve-
locity in the vertical direction.

6. EVALUATION

We evaluated our technique on two standard problems where
blobby objects are used to visualize Lagrangian simulations: sur-
face tracking and motion blur.

Fig. 3. Two blobs moving towards each other.

6.1 Surface Tracking

To integrate an animated implicit surface into a standard render-
ing pipeline, it must be converted into a mesh representation. This
can be done by generating an entirely new mesh at each frame, for
example using marching cubes [Wyvill et al. 1986; Lorensen and
Kline 1987], or by generating a high-quality mesh at the first frame,
and then at each frame updating the mesh to follow or track the im-
plicit surface as best as possible [Bouthors and Nesme 2007].

Tracking a dynamic implicit surface with a mesh is a challenge
because implicit surfaces are most often used when the surface
topology will frequently change during the simulation. Recent tech-
niques such as the el Topo tracker [Brochu and Bridson 2009]
demonstrate that robust mesh-based implicit surface tracking is fea-
sible even in very challenging cases. However, such techniques de-
pend on the velocity field of the underlying implicit surface. In this
section, we compare standard normal velocity with our improved
total velocity approach, which also takes tangential velocity into
account. Our results demonstrate that total velocity provides more
robust and predictable results for surface tracking problems.

To generate the initial high-quality mesh, we perform a
marching-cubes triangulation of the surface, followed by iterations
of uniform Laplacian fairing and a re-projection step:

x← x− F (x)∇F (x)

‖∇F (x)‖2
(5)

to improve the vertex distribution [Ohtake et al. 2003].

6.1.1 Basic Surface Motions. We begin with the most basic
tracking technique - at each frame, for each particle, we compute
either the normal or total velocity and then apply the same forward
Euler step as is used in the simulation that animates the blobs. The
benefit of our total velocity is visible even in the simplest of cases,
such as translation with uniform velocity. Under normal velocity,

Fig. 4. An implicit blob moving to the right with uniform velocity is
tracked using a mesh generated at the first frame (left). Top: normal ve-
locity. Bottom: our total velocity approach.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • J. Stam and R. Schmidt

Fig. 5. A deforming implicit surface generated by two blended blobs con-
nected with a spring is tracked using a mesh generated at the first frame
(left). Triangles are colored based on area change, with blue and red indi-
cating increased and decreased area, respectively. Normal (red) and total
(blue) vertex velocities at second and fifth frame are also shown. Rows 1,3:
normal velocity. Rows 2,4: our total velocity approach.

the mesh appears to “slide” over the surface and bunch up at critical
points, while the total velocity result exactly tracks the underlying
sphere (Figure 4).

Since our formulation was specifically derived to preserve rigid-
ity of the normal field, exact results under translational motion are
perhaps not surprising. It is less obvious whether our approach is
appropriate for non-rigid motions. We examine such a case in Fig-
ure 5, where a “peanut” surface deforms as the distance between the
two underlying blobs is varied. As this case is symmetric about the
origin, tracking with normal velocity is stable, but the mesh under-
goes significantly more deformation than with total velocity. The
“endcaps” of the peanut, which only undergo translational motion,
are deformed under normal velocity but remain rigid with total ve-
locity. In the interior region, the surface is non-rigidly deforming,
however the velocity field images clearly show that our total veloc-
ity provides more accurate estimates of the surface motion.

Another interesting test case is that of rotation, as our tangential
velocity formulation does not explicitly incorporate rotational ve-
locity (Sec 4). We consider the basic case of a blob orbiting around
the origin in Figure 6. Again, we see that under normal velocity the
surface quickly collapses, while total velocity is stable.

A standard method to improve surface tracking is to refine the
mesh after the velocity update. Several techniques have been de-
scribed to maintain a good distribution of particles on an implicit

surface [Witkin and Heckbert 1994; Meyer et al. 2007], however
these techniques assume that the particles can move arbitrarily. This
quickly leads to triangle foldovers if applied to the vertices of a
mesh. Instead, we store the edge lengths of the initial mesh. Then
at each frame, for each vertex, we project the one-ring neighbour-
hood into the vertex tangent plane, add springs with the stored edge
lengths as rest lengths, and then fix the neighbour positions and
solve for the vertex using a simple mass-spring simulation. As with
the velocity step, after each round of fairing we project the vertices
back onto the surface using Equation 5.

Applying even one round of fairing at each frame stabilizes nor-
mal velocity tracking in the point-orbit test, while leaving the to-
tal velocity result relatively unchanged. If we measure the triangle
area distortion, we observe that the mesh is still significantly dis-
torted when using normal velocity. As we increase the number of
fairing rounds, the normal velocity result improves, however this
fairing has a significant cost; in this case, an order of magnitude
more computation time per-frame is necessary to achieve the level
of error generated by total velocity without fairing. The number of
fairing rounds needed to prevent collapse is also speed/timestep-
dependent. Similarly, if we increase the speed of rotation or take
larger timesteps, additional fairing steps must be added to maintain
stability for normal velocity tracking. With total velocity tracking,
we observe only a small increase in area distortion.

6.1.2 Particle-Based Tracking. An alternative to tracking an
implicit surface with a mesh is to discard the connectivity and
track only with particles, which can then be rendered as surfels or
splats [Witkin and Heckbert 1994; Levet et al. 2007]. This neatly
handles the problems associated with topological changes in the un-
derlying implicit surface. The trade-off is that to maintain a good
distribution of particles, one must solve a complex global opti-
mization problem which also requires maintenance of a spatial data
structure. If the particle motion is determined by normal velocity,
then this particle re-distribution must be performed each frame, oth-
erwise the particles quickly bunch up and slide off the surface.

Fig. 6. Tracking of an implicit blob rotating around the origin can be made
more robust by adding fairing steps at each frame. Top left: normal velocity.
Top middle: our total velocity. Top right: normal velocity with one fairing
round. Bottom: plot of mesh distortion with increasing rounds of fairing.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

On the Velocity of an Implicit Surface • 5

Fig. 7. Particle-based tracking of a basic simulation with time-varying
color. Top: Total velocity tracking with per-frame particle re-distribution.
Bottom: Total velocity, no re-distribution.

In Figure 7 we show particle-tracking results on a basic simula-
tion. Blobs are generated at an emitter with a constant randomly-
perturbed velocity, and then fall under gravity. When a blob is
emitted, we also generate new particles at the emitter and project
them to the surface. Figure 7,top shows a result which incorpo-
rates the particle redistribution of Witkin & Heckbert [1994]. We
did not include particle splitting, so gaps inevitably appear as the
blobs spread out, however the surface remains well-covered. Fig-
ure 7,bottom shows another run with higher blob and particle den-
sity, but with the redistribution disabled. This example makes it
clear that the redistribution need only fill in the small undersam-
pled regions that appear as the blobs pull apart; the tracking itself
is highly robust. We note that similar simulations run with normal-
velocity-based tracking quickly broke down.

Undersampling of the sort seen in Figure 7 can often be resolved
simply by throwing more particles at the problem, although this
does adversely affect computation times when each particle moves
at every frame. However, in interactive modeling applications gen-
erally only a portion of the scene is being manipulated at once, so
much higher particle densities can be used, allowing complex de-
formations and topological changes to be handled without expen-
sive particle re-distribution. For example, in Figure 8 we interac-
tively dragged a blob in a small loop, causing multiple topologi-
cal changes. With normal velocity, the particles quickly spread and
bunch up, leaving large gaps. Our total velocity exhibits much bet-
ter performance. A few small holes do appear near the end of the
manipulation, so occasional particle re-distribution would still be
desirable, but can safely be deferred to idle time without affecting
the ability of the user to understand the surface.

6.1.3 Rigidity. So far, we have focused on how well the
tracked surface approximates the underlying implicit surface over
time. Another desirable property is that the tracked points remain
in consistent locations on the surface. Again, as the implicit surface
lacks a natural parameterization, there is no well-defined notion of
“surface location”. However, in most cases we have some intuition
for how a particle should move between frames.

In Figure 9 we assign a color to each tracked point based on the
underlying implicit scalar field. These colors allow us to visualize
how the tracked points “flow” over the surface during the simula-
tion. As the shape is simply rotated about a central point, the ideal

result is one in which the colors remain completely static. With nor-
mal velocity, the mesh slides across the surface extensively, to the
point where the initial colors have been shifted counter-clockwise
an entire blob after one revolution, while with total velocity we see
a much smaller shift in the spatial location of the colored regions.
In both cases, per-frame fairing is applied.

6.1.4 Discontinuities. So far we have focused on isosurfaces
of smooth scalar fields, which are naturally produced by blended
blobs. However, in many other implicit scenarios the underlying
scalar fields have discontinuities. For example, combining two
sets of blended blobs F1 and F2 with the max operation results
in the Boolean union of their surfaces. The discontinuity in the
max(F1, F2) operator becomes a discontinuity in the scalar field,
producing a crease between the two surfaces. Along this contour
the gradient and Hessian are mathematically undefined, and Eq. 4
cannot be evaluated. However, in practice∇max(F1, F2) is imple-
mented by evaluating the values and gradients of each input field
and selecting one to return, so the discontinuity is simply trans-
ferred to the velocity field.

Discontinuities in the velocity field are not a significant problem
for even our simplistic tracking methods. In Figure 10 the implicit
surface is the union of a rotating “stick” of blended blobs, and a
single larger blob. With faired mesh-based tracking we see no more
accumulated error than in experiments with smooth velocity fields.
Note that the fairing steps do induce the blue portion of the mesh to
rotate with the green and red regions, even though it has no velocity.
In a particle tracker without fairing, red and green particles which
slide across the crease immediately become stationary, while blue
particles are “picked up” by the rotating stick. This leaves some un-
dersampled regions, but at no point do the discontinuities cause the
tracking to become unstable. Note, however, that field discontinu-
ities may be more problematic if the gradient or Hessian is numer-
ically approximated via finite differences.

Fig. 10. A “stick” made from blended blobs (red to green) is rotated 180
degrees through a larger blue blob using Boolean union. Top row: track-
ing with colored mesh. Middle row: area distortion measure. Bottom row:
points-only tracking.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • J. Stam and R. Schmidt

Fig. 8. Interactive manipulation of an implicit peanut, visualized using surfels that track the surface. The underlying implicit surface is also visualized. Top
row: normal velocity. Bottom row: our total velocity approach.

Fig. 9. 3 blended blobs rotating 360◦ about the origin (white dot) are tracked using a mesh generated at the first frame, with 10 fairing steps at each frame.
Colors are assigned to vertices at the first frame, so the change in color shows how the vertices flow across the surface over time. With perfect tracking, the
first and last frames would be identical. Top row: normal velocity. Bottom row: our total velocity approach.

6.2 Motion Blur

We have implemented our technique in the MAYA animation soft-
ware that uses the Mental Ray renderer. Mental Ray requires the
velocity of each point on a mesh in order to motion blur it. We
first converted the blobby field into a mesh using some variant of
the marching cubes algorithm [Lorensen and Kline 1987]. Then we
used the results in Section 5 to compute a velocity for each vertex
of the mesh.

Figure 11 shows a simple weighted average on the left and our
motion blur on the right. Notice that our approach predicts a more
correct velocity. Figure 12 shows a motion blurred sequence of an
animation of a texture mapped lava-like flow.

7. CONCLUSION AND FUTURE WORK

In this paper we have presented a way to uniquely define a veloc-
ity at the surface of an evolving implicit function. We applied this
method to two problems involving blobby implicit surfaces: track-
ing a moving surface and motion blurred rendering. Equations 1

Fig. 11. Two motion blurred blobs moving towards each other. Left: sim-
ple weighting. Right: our approach.

and 4 are general and can be applied to the computation of the ve-
locity field for any given implicit surface.

We believe that our result could be useful in other applications
of implicit surfaces, in particular the the problem of visualizing
an implicit surface being interactively manipulated in a 3D model-
ing tool [Witkin and Heckbert 1994]. Figure 8 demonstrates that it
is possible to maintain a reasonable surface sampling by advecting
the particles through the velocity field defined by the user’s actions.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

On the Velocity of an Implicit Surface • 7

As visualization is the bottleneck in interactive implicit modeling,
this improvement could have significant impact. Another applica-
tion area might be to use this result to improve particle based sim-
ulations of fluids.

Fig. 12. A sequence of frames from a lava simulation.

ACKNOWLEDGMENTS
The authors thank Duncan Brinsmead and Igor Mordatch for help-
ful discussions. The second author was funded in part by NSERC
and MITACS.

REFERENCES

BLINN, J. F. 1982. A Generalization of Algebraic Surface Drawing. ACM
Transactions on Graphics 1, 3 (July), 235–256.

BOUTHORS, A. AND NESME, M. 2007. Twinned meshes for dynamic
triangulation of implicit surfaces. In Proc. Graphics Interface 2007. 3–9.

BROCHU, T. AND BRIDSON, R. 2009. Robust topological operations for
dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4,
2472–2493.

ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I. 2002. A
hybrid particle level set method for improved interface capturing. J. Com-
put. Phys. 183, 83–116.

LEVET, F., GRANIER, X., AND SCHLICK, C. 2007. Marchingparticles:
Fast generation of particles for the sampling of implicit surfaces. Com-
puter Graphics & Geometry 9, 1, 18–49.

LORENSEN, W. AND KLINE, H. 1987. Marching Cubes: A High Res-
olution 3D Surface Construction Algorithm. ACM Computer Graphics
(SIGGRAPH ’87) 21, 4 (August), 163–169.

MEYER, M., KIRBY, R. M., AND WHITAKER, R. 2007. Topology, ac-
curacy, and quality of isosurface meshes using dynamic particles. IEEE
Transactions on Visualization and Computer Graphics 12, 5.

MOORE, E. H. 1920. On the reciprocal of the general algebraic matrix.
Bulletin of the American Mathematical Society 26, 394–395.

MULLAN, M., WHITAKER, R., AND HART, J. 2004. Procedural Level
Sets. Presented at the NSF/DARPA CARGO meeting, May, 2004.

OHTAKE, Y., BELYAEV, A., AND PASKO, A. 2003. Dynamic mesh opti-
mization for polygonized implicit surfaces with sharp features. The Vi-
sual Computer 19, 2-3, 115–126.

RODRIAN, H.-C. AND MOOCK, H. 1996. Dynamic triangulation of ani-
mated skeleton-based implicit surfaces. In Proc. Implicit Surfaces ’96.

SMETS-SOLANES, J.-P. 1996. Vector Field Based Texture Mapping of
Animated Implicit Objects. Computer Graphics Forum (EUROGRAPH-
ICS’96 Proceedings) 15, 3, 289–300.

WITKIN, A. AND HECKBERT, P. 1994. Using Particles to Sample and Con-
trol Implicit Surfaces. ACM Computer Graphics (SIGGRAPH ’94) 28, 4
(July), 227–234.

WYVILL, G., MCPHEETERS, C., AND WYVILL, B. 1986. Data structure
for soft objects. The Visual Computer 2, 4, 227–234.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

