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Abstract

We introduce a new class of subdivision surfaces which generalize uniform tensor
product B-spline surfaces of any bi-degree to meshes of arbitrary topology. Surpris-
ingly, this can be done using subdivision rules that involve direct neighbors only.
Consequently, our schemes are very easy to implement, regardless of degree. The
famous Catmull-Clark scheme is a special case. Similarly we show that triangular
box splines of total degree 3m + 1 can be generalized to arbitrary triangulations.
Loop subdivision surfaces are a special case when m = 1. Our new schemes should
be of interest to the high-end design market where surfaces of bi-degree up to 7 are
common.
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1 Introduction

In this paper we present a new class of subdivision surfaces which generalize uniform tensor
product B-spline surfaces of any bi-degree to meshes of arbitrary topology. The generaliza-
tions for bi-degrees 2 and 3 were published in 1978 simultaneously by Catmull and Clark
[1] and by Doo and Sabin [3]. Until recently [9], it seems no attempt has been successful in
extending this work to surfaces of higher bi-degrees. This is partly due to the erroneous belief
that such schemes require large subdivision masks and, consequently, would be difficult to
implement. In this paper we show that the subdivision rules for uniform B-spline surfaces
of any bi-degree can be generalized to meshes of arbitrary topology using operations which
involve direct neighbors only. Consequently, our schemes are very easy to implement, regard-
less of degree. In fact, one version of our schemes requires only minimal modifications to an
existing implementation of the Catmull-Clark scheme. The key idea behind our method is a
generalization of the recurrence that computes binomial coefficients, viz. the Pascal Triangle.
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Fig. 1. This figure shows the reflection lines on a NURBS patch of bi-degree 5. By varying the
control vertices a designer has enough degrees of freedom to control the variation of the reflection
lines.

This fact was first observed by Lane and Riesenfeld in the curve setting [6]. However, they
did not generalize this property to arbitrary meshes.

The main motivation behind this work is to bring subdivision surfaces to the wider design
market, especially the high-end design market, such as the automotive industry where sur-
faces of bi-degree 5 and 7 are frequently used. Such surfaces are important because they give
designers enough degrees of freedom to directly control how a car body reflects its environ-
ment. A standard environment is often composed of a set of parallel lines. The smoothness
of the surfaces is then evaluated by observing how these lines are reflected off of the surface.
The resulting patterns are known as “reflection lines.” In order to control the reflection lines
directly a designer has to control the variation of the curvature. Consequently, surfaces of
bi-degree higher than 3 are needed. Figure 1 shows the reflection lines on a NURBS patch
of bi-degree 5.

The main problem designers currently face concerns regions of irregular topology. For exam-
ple, corners are typically handled by trimming 3 NURBS surfaces of high bi-degree. Trimming
is a time-consuming process that yields only approximate continuity. Indeed, at the trim, the
surface may not even be C° continuous. Consequently, designers are forced to fine-tune many
arcane parameters for the best fit. Our schemes, on the other hand, are naturally curvature-
continuous everywhere except at a finite number of points where the curvature generally
diverges—just like the Catmull-Clark scheme. Furthermore, by using higher-degree surfaces,
we can reduce the rate of divergence.

Given our technique’s simplicity, ease of implementation, and practicality, we were surprised
that these techniques weren’t well known in the field of computer aided design. We are aware
of only one reference which states such a technique prior to our work. This is the “mid point”
scheme of Prautzsch [9]. Unfortunately he did not discuss any practical applications and
extensions of his scheme. We suppose that lower-degree surfaces are sufficient for character
animation and free-form modeling, which have up to now been the only applications of
subdivision surfaces in industry. By contrast, the high-end design industry has only recently
begun to consider the use of subdivision surfaces. In addition to its practical importance,
our work is also of theoretical interest. Indeed, our new schemes elegantly generalize the
theory of uniform B-splines to arbitrary meshes. We show that uniform B-spline surfaces



can be viewed as a special case of a simple smoothing algorithm on general meshes. Also,
some of our schemes can be interpreted as single steps in a multigrid solver. They therefore
tie in nicely with the variational approaches to subdivision introduced by Kobbelt [5] and
Weimer and Warren [15]. We believe that the different point of view described in this paper
has the potential to lead to further insights and developments in the theory of subdivision
and surface modeling in general.

After we finished this research, we became aware of related work done independently by
both Zorin and Schroder [16] and Warren and Weimer [14]. Their generalizations of the
Lane-Riesenfeld algorithm to arbitrary meshes are essentially identical to our Simple algo-
rithm and the mid-point scheme of Prautzsch [9]. Zorin and Schrdder call their algorithm
“repeated averaging” and describe an elegant implementation using quad trees. Their tech-
nique also extends to multi-resolution meshes. Warren and Weimer use their algorithm to
define subdivision schemes in higher dimensions than 2. An important example is subdivision
volumes defined by repeatedly averaging a three-dimensional mesh. We also mention that
Velho and Zorin have recently proposed a new set of subdivision schemes for 4 — 8 meshes
that also relies on a factorization of the subdivision rules [13].

The rest of this paper is organized as follows. In the next section we briefly review subdivision
for uniform B-spline curves and a recursive algorithm to compute them. These results are
then easily extended to tensor-product B-spline surfaces of any degree. In Section 3, we
present several possible generalizations of these rules to meshes of arbitrary topology. We
discuss the continuity of these schemes in Section 4. Finally, in Section 5 we present some
examples of surfaces generated with our new algorithm and conclude in Section 6.

2 The Curve Case

The subdivision rules for uniform B-spline curves of any degree are well known and are
related to the binomial coefficients. Lane and Riesenfeld first showed how to subdivide effi-
ciently using only local averages [6]. This result is proven elegantly using the discrete Fourier
transform as shown in Chui’s monograph [2]. We do not repeat the proof here. We start by
describing the Lane-Riesenfeld algorithm for doubling the number of control vertices for a
given B-spline curve. The algorithm subdivides a set of initial control vertices
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of a degree d uniform B-spline curve in d steps. First, the set of control vertices is linearly
subdivided:
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Fig. 2. On the left, Lane-Riesenfeld subdivision is applied to the control vertices of a uniform
B-spline curve of degree 5. On the right, applying 2 averaging steps at a time allows the control
vertices to be computed in place.

Subsequently, new control vertices are generated using d — 1 averaging steps:

1
szi(Pf_lJrPf;ll) k=2--d. (2)

See the left half of Figure 2 for a visual depiction of this algorithm. Notice that in the first
step the number of vertices is doubled, while in the averaging steps it remains the same.
Each averaging step raises by one the degree for which the original and new control vertices
produce the same curve.

We now propose two modifications of this scheme that are both formally equivalent to it. We
mention these schemes here because their generalizations to meshes are easier to implement
and can handle boundaries and creases more gracefully. As is evident from the left side of
Figure 2, the vertices before and after an averaging step are staggered, while the control
vertices before and after two averaging steps are “in place.” The latter is more desirable
when implementing this algorithm. Therefore, we propose an algorithm equivalent to the
Lane-Riesenfeld scheme which leaves the vertices in place by performing two averaging steps
at a time. We obtain an algorithm for uniform B-splines of odd degree d = 2m + 1 by
performing one linear subdivision step followed by m “smoothing steps”:

1 1 1
ng—i—l _ Z ng—l + 5 Psi;l n Z Pﬁ;l (k =1, .,m). (3)

Each smoothing step effectively elevates the degree by 2. The effect of the algorithm is
depicted in the right half of Figure 2. A similar algorithm which keeps the vertices in place
can be designed for uniform B-splines of even degree d = 2m + 2 as follows. We start with
one linear subdivision step (Equation 1) and one averaging step (Equation 2) followed by



m smoothing steps, as in Equation 3 with 2k + 1 and 2k — 1 replaced by 2k + 2 and 2k,
respectively.

The generalization of these schemes to tensor-product uniform B-spline surfaces of arbitrary
bi-degree is straightforward—simply apply the algorithm twice: once for each direction of
the control vertex mesh (possibly using different degrees in each of the two directions).

3 The Surface Case

We now introduce our new surface subdivision schemes. The input to our schemes is an
arbitrary (manifold) mesh MO. A mesh is defined by 3 arrays that store the vertices, edges
and faces. Each vertex contains its position as well as the indices of the neighboring edges
and faces. Each edge contains the indices of its end points and the indices of the two adjacent
faces. Similarly, each face contains the indices of its neighboring faces, edges and vertices.

Each one of our schemes starts by linearly subdividing the mesh MO:
M1 = LinSubdivide ( MO ).

In this step the vertices of the original mesh are unaffected and new vertices are added at
the midpoint of each edge and at the centroid of each face. Edges are added connecting
face centroids with each of the surrounding edge midpoints, guaranteeing that the new mesh
consists of quadrilateral faces. If we stop here, the subdivision scheme is a generalization
of a uniform B-spline of bi-degree 1. Starting from this linearly subdivided mesh, there are
different means of obtaining generalizations of uniform B-spline surfaces of arbitrary degree.
Before we proceed, let us review some standard nomenclature. To each vertex we assign
a valence which is equal to the number of edges emanating from the vertex. A vertex is
called regular if it has valence four; otherwise it is called extraordinary. The bi-degree of the
B-spline surface we wish to generalize is denoted by d in this section.

3.1 The Simplest Scheme

Our simplest scheme is a direct generalization of the Lane-Riesenfeld algorithm. We apply
d-1 averaging steps to the linearly subdivided mesh M1:

Simple ( MO, d )
M1 = LinSubdivide ( MO )
for k=1 to d-1 do
M1 = Dual ( M1 )
end for
return Mi.
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Fig. 4. Smoothing masks for our odd degree subdivision scheme applied to vertices of valences 3, 4
and 5, respectively.

The Dual function generalizes the averaging step of Equation 2 to arbitrary meshes. The
dual of a mesh M1 is a new mesh whose vertices are the centroids of M1’s faces and whose
edges join centroids of faces that share a common edge in M1. Figure 3 illustrates the linear
subdivision step and several dual steps. Clearly, each step requires only that we find the
direct neighbors of vertices, edges, and faces.

Although this scheme is conceptually very simple, it is inefficient because the Dual routine
modifies the topology of the mesh. This is the main reason we introduce two other gener-
alizations next. See, however, the work of Zorin and Schroder, who developed an elegant
implementation of this scheme using quad trees [16].



3.2 The Odd Degree Scheme

As we suggested in Section 2, we can define a more efficient subdivision scheme that gener-
alizes uniform B-spline surfaces of odd degree. This scheme generalizes the smoothing steps
of Equation 3:

0dd ( MO, d )

M1 = LinSubdivide ( MO )
for k=1 to (d-1)/2 do
0ddSmooth ( M1 )

end for
return Mi.

The smoothing function 0ddSmooth updates the vertices of the mesh. The smoothing of a
vertex v involves only the vertices of the faces adjacent to vertex v. The vertices are updated
in a “Jacobi manner” and require extra storage to cache the position of each vertex before a
smoothing step. For regular vertices, the smoothing mask is simply the tensor-product version
of Equation 3, whose mask consists of 3 x 3 = 9 numbers, as shown in the middle of Figure
4. At an extraordinary vertex v, the mask is more complicated and includes v itself as well
as N edge vertices and N face vertices, where N is the valence of v. We use a(N) to denote
the coefficient associated with v. For reasons of symmetry, all the coefficients associated with
v’s edge vertices have to be equal; call them (V). Similarly, all the coefficients for v’s face
vertices are equal; call them (N). See Figure 4 for a depiction of the masks for extraordinary
vertices of valence 3 and 5. There are many possible choices for the values of the coefficients,
but they should at least give rise to an affine invariant subdivision scheme:

a(N)+ N B(N)+ N vy(N) = 1.

It is also desirable to have coefficients that are positive to ensure stability and to guarantee
the convex hull property. One choice of parameters that has all the desired properties is as
follows:

A single smoothing step with these masks is equivalent to the original Catmull-Clark scheme
[1]. Tt is, however, different from the Simple algorithm run with an odd degree. Also note
that existing implementations of the Catmull-Clark scheme can easily be modified to han-
dle surfaces of arbitrary odd degree. Simply follow a Catmull-Clark subdivision step with
(d-3) /2 odd smoothing steps.



3.3 The Even Degree Scheme

To construct a scheme for even degrees, we apply one averaging step (the Dual function) to
the linearly subdivided mesh first, followed by (d-2)/2 even smoothing steps. (Alternatively,
we could start with a mesh subdivided using the Doo-Sabin scheme, for example [3].) Here
is our algorithm:

Even ( MO, d )
M1 = LinSubdivide ( MO )
M1 = Dual ( M1 )
for k=1 to (d-2)/2 do
EvenSmooth ( M1 )
end for
return Mi.

Before smoothing, each vertex of the mesh is regular, and therefore we can define EvenSmooth
as follows. Replace each vertex with the average of the centroids of the four adjacent faces.
This operation is local and has the desired properties of affine invariance and positive coeffi-
cients. In fact, using this scheme is identical to using Simple with an even degree. However,
the Even function is more easily implemented and more efficient than Simple because it does
not replace M1 with a dual mesh whose topology differs in every smoothing step.

3.4 Boundaries, Corners and Creases

Sharp boundaries and creases [4] are easily incorporated in our odd subdivision schemes.
For bi-degree 1 surfaces all edges are creased and all boundaries are sharp. Therefore, the
first subdivision step is the same as the one called in the routine 0dd. Only the smoothing
step has to be modified. For vertices not on the boundary or on a crease, we apply the same
mask as in Section 3.2. For a vertex on a crease or on a boundary, we simply use the curve
smoothing mask defined by Equation 3 along the crease or the boundary. When more than
two crease edges meet at a vertex, we consider the vertex a cusp or corner and perform
no smoothing. We believe this implementation to be particularly elegant since it requires
only minor modifications to the routine 0dd. It is not at all clear how to add boundary and
crease rules to even degree generalizations of uniform B-splines. This is a well-known problem
with dual schemes such as Doo-Sabin. When creases and sharp boundaries are needed, we
recommended the use of the modified 0dd scheme.

3.5  Triangular Schemes

Our generalizations of uniform tensor-product B-splines can also be extended to handle
triangular subdivision surfaces. A scheme generalizing the subdivision rules for triangular
box spline surfaces of total degree 4 was first proposed by Loop in 1987 [7]. Similarly, the



Fig. 5. On the left, vertex subdivision mask for Loop subdivision scheme. On the right, correspond-

ing smoothing mask for this vertex in our scheme.
s
— >

Fig. 6. The subdivision matrix relates the control vertices surrounding an irregular point after one
subdivision step.

subdivision masks for triangular box splines of higher degree can be related to lower degree
ones. We construct generalizations of triangular box splines of total degree d = 3m + 1 by
a straightforward extension of our 0dd scheme. First we add new vertices at the midpoint
of each edge of the triangulation, next we perform m smoothing steps of the vertices. The
smoothing mask involves direct neighbors only and is related to the vertex subdivision mask
of Loop subdivision surfaces [7]. Let a and [ be the coefficients of the vertex mask as shown
on the left of Figure 5. Then the coefficients of the smoothing mask are given by o/ = a— N[
and ' = 20, where N is the valence of the vertex. For a regular vertex having valence 6 we
have o/ =1/4 and ' = 1/8. In this new formulation there is no need to distinguish between
vertex and edge rules. Generalizations to other degrees are possible but schemes analogous
to the Simple one for B-splines are trickier since the dual of a regular triangular mesh is
hexagonal, whereas for regular B-spline meshes the dual remains a quad mesh.

4 Remarks on Smoothness

The surfaces obtained using our new schemes are naturally C'“~!-continuous except at a finite
number of irreqular points. When d is odd these points correspond to the extraordinary
vertices, while for even degrees they correspond to the centroids of the non-quadrilateral
faces. This is obvious since away from the irregular points, our subdivision rules are identical
to the ones for tensor-product B-splines of bi-degree d. Each irregular region shrinks at every
subdivision step and approaches a point in the limit of infinite subdivision.
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Fig. 7. Characteristic meshes of the 0dd and Even schemes at an irregular point of valence 5. The
bi-degrees range from 2 (left) to 8 (right).

The smoothness analysis at the irregular points is more subtle and has only recently been
fully clarified [8,10,17]. Of crucial importance is the eigenstructure of the subdivision matrix.
To every irregular point we associate a set of neighboring vertices that influence its limit
position on the surface. For odd degrees this set consists of the extraordinary vertex and
(d — 1)/2 rings of vertices surrounding the extraordinary vertex. The left half of Figure 6
shows these vertices for valence N = 5 and bi-degree d = 7. For even degrees the set includes
d/2 rings of vertices surrounding the face. See the right half of Figure 6 for an example with
N =5 and d = 6. The subdivision matrix S specifies how this set of vertices is transformed
into a topologically similar set of vertices by one iteration of subdivision.

We have computed the eigenstructure of subdivision matrices for a wide range of different
valences and bi-degrees. Due to the affine invariance of the subdivision rules, the largest
eigenvalue is always equal to one. The subdominant (next largest) eigenvalue A < 1 is
of geometric multiplicity two. The two eigenvectors corresponding to A are crucial in the
smoothness analysis. In particular these eigenvectors form a planar mesh which, when sub-
divided, yields a surface called the characteristic map [10]. When this map is injective and
regular, the corresponding subdivision scheme is C''. Figure 7 shows the meshes of the char-
acteristic map of the 0dd and Even schemes for an irregular point of valence 5 and bi-degrees
ranging from 2 to 8. The surfaces obtained by subdiving these meshes seem to be injective.
We therefore believe that these schemes are C! at the irregular points. Zorin and Schroder
have rigorous C' proofs for the Simple scheme for degrees up to 9 [16]. Finding rigorous
proofs for higher bi-degrees remains an open problem, however.

More interesting is the analysis of higher-order smoothness. A necessary condition for cur-
vature continuity at the irregular points is that the eigenvalue i next largest after \ satisfies
p = A% [3]. Unfortunately our schemes never satisfy this condition at the irregular points.
Therefore none of our schemes are C? at the irregular points. However, the smoothness im-
proves with higher degree as y approaches A\2. In Table 1 we list the ratio § = log 11/ log A for
several valences and bi-degrees.! The ideal ratio is 2 as in the regular case when the valence
is 4. When 6 < 2 the curvature diverges. When § > 2 the curvature is zero, indicating that
the limit surface is locally flat. It is interesting to note that for valence 3, additional smooth-
ing actually increases the curvature divergence. For all other valences, the rate of divergence
decreases as the degree goes up, which is desirable. We note that satisfying the condition
i = A% guarantees bounded curvature but does not guarantee continuous curvature. See
Zorin [17] for more details.

1 There is no entry for d = 2 and N = 3 because we have only 3 eigenvalues and the ratio is
therefore not defined.
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Simple scheme 0dd scheme

valence valence
3 4 5 6 7 3 4 5 6 7
2| — 2.000 2.205 2.087 1.923 2.010 2.000 1.804 1.635 1.505
3] 1.555 2.000 1.804 1.635 1.505 1.608 2.000 1.900 1.774 1.655
411498 2.000 1.967 1.890 1.791 1.578 2.000 1.932 1.833 1.727
r 51519 2000 1.900 1.774 1.655 1.556 2.000 1.948 1.865 1.769
6
7
8

O N ot Ww

1.502 2.000 1.962 1.889 1.799 11 | 1.544 2.000 1.958 1.885 1.797
1.510 2.000 1.932 1.833 1.727 13 | 1.536 2.000 1.964 1.899 1.818
1.503 2.000 1.965 1.898 1.815 15 ] 1.531 2.000 1.969 1.909 1.833

Table 1
Ratio 6 = log i1/ log A for different valences and bi-degrees. Results for the Simple scheme left and
0dd scheme right.

The lack of C? continuity in our schemes of degree d < 6 comes as no surprise; Reif proved
that any C? subdivision scheme generalizing polynomial surfaces must be of at least bi-degree
6 [11].

5 Results

We have implemented our new schemes as a plugin in our modeling and animation software
package MAYA. Fortunately, we were able to reuse many existing routines already available
in our software. Also our new 0dd scheme with creases for bi-degree 3 turned out to be a
much simpler implementation than our current implementation of Catmull-Clark schemes
with creases. In Figure 8 (top) we depict our Simple scheme applied to a simple cube.
The bi-degrees range from d = 1 to d = 5. Below it we depict surfaces generated using
our implementation of the Even and 0dd schemes. The surfaces generated using the Even
scheme are identical to the corresponding ones generated using Simple. It is interesting to
note that the “nicest shape” in this case is obtained with the 0dd with a degree d = 3, i.e.,
the Catmull-Clark scheme. This is consistent with our smoothness analysis in Section 4: the
curvature divergence near a valence 3 vertex is slowest when d = 3.

In Figure 9 we show the reflection lines on a surface with a vertex of valence 3 (top) and
of valence 7 (bottom). The bi-degrees of the surfaces are d = 3,5 and 7 from left to right.
As noted above, the behavior of the reflection lines worsens with degree when the valence is
three while it improves with degree for higher valences.

Figure 10 depicts results from our implementation of the triangular scheme. The case d = 4
is equivalent to Loop’s scheme.

Finally Figure 11 is an example of the type of surfaces often encountered in the automotive
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a vertex of valence 7 in the center. The shape of the surfaces are shown in the right most column

left to right). The top surfaces have a vertex of valence 3 in the center, while the bottom ones have
of the figure.

Fig. 9. Reflection lines on surfaces generated using our 0dd schemes for bi-degree 3

Fig. 8. Our new subdivision schemes applied to a cube.

Even and 0dd schemes (below).
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4 is equivalent to Loop’s scheme.

to 10. The case d

Fig. 11. A typical shape encountered in the automotive industry. The car body is entirely modeled

using the polygonal mesh shown on the top of this figure.
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industry. The entire car body was modeled using a single polygonal mesh shown on the top
of Figure 11. To model a similar surface with trimmed NURBS alone would have been much
more time consuming. In Figure 11 we show both a shaded version of the model (middle) and
its reflection lines (bottom). The reflection lines are very well behaved on this model. The
surfaces shown in Figure 11 were generated using the 0dd scheme of bi-degree 5. In general
the amount of smoothing could be a user specified attribute for each vertex. For example,
near valence 3 vertices less smoothing might be desirable. These surfaces could be a possible
candidate to replace high order NURBS in the high-end design market.

6 Conclusions and Future Work

In this paper we have introduced a new class of subdivision schemes generalizing tensor-
product B-splines of any bi-degree to arbitrary meshes. Although these generalizations are
not C? everywhere, they provide useful alternatives to the current practice in the high
end design market. Our schemes offer C%~! continuity everywhere except at the irregular
points, where they seem to be C''. This continuity compares favorably with trimmed NURBS,
which are often not even C°. While the curvature of our schemes in general diverges at the
irregular points, it does so very slowly. Our schemes can also be evaluated exactly everywhere,
even near irregular points, using a straightforward extension of Stam’s work on evaluating
Catmull-Clark surfaces [12]. The eigenbasis functions are easily precomputed for a set of
valences and bi-degrees. In addition, the initial mesh has to be subdivided a sufficient number
of times to isolate the extraordinary points.

Our approach should be of general interest to the surface modeling community as it sheds
new light on the problem of handling arbitrary topologies. We believe our solution to be
particularly simple and elegant.

We also hope that our approach will lead someone to settle a long-standing question: are
there locally supported subdivision schemes with the convex hull property that are C? at
irregular points?
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