
Copyright © 2005 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2005 ACM 1-59593-013-2/05/0004 $5.00

HoverCam: Interactive 3D Navigation for Proximal
Object Inspection

Azam Khan, Ben Komalo, Jos Stam, George Fitzmaurice, Gordon Kurtenbach

Alias
210 King Street East, Toronto, Ontario, Canada

{akhan | bkomalo | jstam | gf | gkurtenbach }@alias.com
www.alias.com/research

Abstract

We describe a new interaction technique, called HoverCam, for
navigating around 3D objects at close proximity. When a user is
closely inspecting an object, the camera motions needed to move
across its surface can become complex. For tasks such as 3D
painting or modeling small detail features, users will often try to
keep the camera a small distance above the surface. To achieve
this automatically, HoverCam intelligently integrates tumbling,
panning, and zooming camera controls into a single operation.
This allows the user to focus on the task at hand instead of
continuously managing the camera position and orientation. In
this paper we show unique affordances of the technique and
define the behavior and implementation of HoverCam. We also
show how the technique can be used for navigating about data
sets without well-defined surfaces such as point clouds and
curves in space.

Categories and Subject Descriptors: I.3.6 [Computer Graphics]:
Methodology and Techniques – Interaction Techniques; H.5.2
[Information Interfaces And Presentation (HCI)]: User Interfaces –
Interaction styles, Input devices and strategies.
Additional Keywords and Phrases: interaction techniques, camera
controls, 3D navigation, 3D viewers, 3D visualization.

1 Introduction
The most commonly used operation in 3D computer graphics
and animation software is camera movement. Users often move
the camera to help them sense the 3D properties of a model or
animation or while performing modifications. When working at
close proximity to an object like, for example, when painting
details on an object, the camera must often be moved to see
neighboring surfaces. However, despite the heavy usage of
camera tools in 3D content creation software, the industry
standard zoom, pan, and tumble tools have been the primary
camera controls offered to users for over a decade.

For keyboard and mouse based user interfaces, interactive 3D
camera control is fundamentally difficult because the task
involves controlling the six distinct degrees of freedom (DOF)
(translation x,y,z and rotation α,β,χ) of the virtual camera with
just two DOF of mouse input. The simplest approach is to
assign the two DOFs of the mouse to two different DOFs of the
camera, at different times. However, more sophisticated
approaches that emulate real world behaviors, or better match
the task at hand and/or the skills of the user, have largely
replaced the simple approach. For example, the industry
standard zoom, pan, and tumble tools reflect typical methods of
controlling physical camera from the film production industry.
Even more sophisticated camera control techniques take into
account information about the scene. For example, 3D video
games often have a walking metaphor of camera motion. This
metaphor suggests many things: there is a ground plane, the
viewpoint is somewhat above the ground, camera rotation is
egocentric, there is notion of which way is “up”, etc. These
constraints simplify camera motion from a general 6 DOF
problem to almost a 2 DOF problem. Further constraints, such
as collision detection, prevent the camera from passing through
walls, characters, and objects in the scene. This entire set of
constraints is needed to convey the walking camera metaphor.

The camera metaphor we explore in this paper is navigation
around 3D objects at close proximity. For this task, we would
like to move around the object while maintaining a fixed
distance from the surface and while keeping the object roughly
centered in the field of view. We call this metaphor object
inspection. As with the walking metaphor described above, we
attempt to use as many constraints as possible, given by the
context of our metaphor, to simplify the number of controls
needed to navigate through space during typical object
inspection.

Figure 1. Desired HoverCam motion over a sphere and
a cube (shown in profile).

73

2 HoverCam
Figure 1 shows the type of camera motion behavior we would
like for a simple sphere and cube. Note that given the
constraints of (1) keeping the camera a fixed distance from the
surface and (2) relatively normal to the surface effectively
creates a shell around the object being observed, on which the
camera can be positioned. Around curved surfaces, the camera
follows the surface but at a fixed distance. Around corners, the
camera turns to smoothly move toward a neighboring surface.
Finally, around flat surfaces, like the side of the cube, the
camera pans as expected to keep the underlying surface facing
the viewpoint.

Camera paths like these can be achieved using the traditional
separate pan, zoom, and tumble tools but at the cost of
constantly switching between the three tools. Also, as these
tools do not typically perform any collision detection, users may
end up in awkward locations inside the object, looking away
from the object, or at great distances for the object. For
example, in Alias’ Maya software, the system is placed in
camera mode by holding down the alt-key. Dragging with the
left mouse button then tumbles the camera (rotates about the
current look-at point). Dragging the middle mouse button pans
the camera (translates the eye and the look-at point) and
dragging with both left and middle mouse buttons performs
zooming (moving the eye toward or away from the look-at
point). Releasing the alt-key stops the camera tool and reselects
the user’s previous tool.

A smooth camera path around the outside of an object is simply
not achievable with these separate tools. To keep a point of
interest on the surface of the object near the center of the view,
the user must always overshoot, switch tools, correct the view
with another tool, overshoot again, and so on.

2.1 Basic HoverCam Algorithm
A smooth camera path can be achieved with a trajectory
algorithm loosely based on the model of a satellite orbiting an
object with a gravity field (see Figure 2). The steps performed
are:

(a) apply user input to the eye point E0 (current camera
position) and look-at point L0, to create E1 and L1,

(b) search for the closest point C on the object from the
new eye position E1,

(c) turn the camera to look at C, and,
(d) correct the distance δ1 to the object to match the

original distance to the object δ to generate the final
eye position E2.

(e) clip the distance traveled (discussed in Section 2.5).

This algorithm, in effect, selectively combines the operations for
zooming, panning, and tumbling during a single mouse drag.
This has the advantage that HoverCam only requires a single
button mouse, pen-press, or a single finger press on a touch
screen to apply camera motion. In contrast, as mentioned earlier,
standard zoom, pan, and tumble tools typically require multiple
buttons to switch between the operations for zooming, panning
and tumbling. Furthermore, to achieve HoverCam motion with
the traditional separate tools would require ongoing switching of
the tools to continually correct the camera motion to follow the
surface.

Figure 2. Basic Camera Update Rules. (a) move eye
based on user input, (b) look for C, closest point on
object, (c) turn camera to C, and (d) correct distance.

Using HoverCam has the feeling of hovering above the object.
Figure 3 shows two sets of screen images showing the user’s
perspective as HoverCam is being used to inspect a cube and a
cylinder, maintaining a consistent scale and distance from the
object. Note how HoverCam pans on the side of the cube, and
turns about the corner of the cube. Also note that on the
cylinder, the camera pans along the shaft, turns smoothly to the
end disc, and pans across the disc.

To highlight the difference between traditional center-based
camera motion and surface-based camera motion, see the
example of motion about a cylinder in Figure 4. With the simple
traditional tumble, the rotation about the cylinder would have
placed the camera inside the object. However, with HoverCam,
moving to the right pans the camera until it can rotate about to
continue panning across the end disc.

74

Figure 3. HoverCam around a cube and a cylinder,
from the point of view of the user.

Figure 4. Simple Rotation versus HoverCam: The grey
path shows how a simple rotation about the center of a
cylinder leaves the camera within the object. However,
HoverCam moves the camera along the cylinder and
only rotates when turning about the end of the shaft
(black path).

2.2 Blending Camera Techniques
As HoverCam would normally be used together with traditional
freeform navigation tools, we have designed HoverCam to
interoperate between the various camera techniques in a fairly
seamless way. Freeform camera motion allows the user to
navigate to any point in space and to face in any direction. For
specific surface-based tasks like 3D painting or sculpting,
HoverCam provides a subset of this freedom with the benefit of
following the surface. Switching from HoverCam to a freeform
camera could simply be invoked by clicking on a tool icon or by
a key press. However, switching from a freeform camera to
HoverCam may cause an abrupt reorientation and reposition of
the camera because an initial search may find a result quite far
from the current view. Two methods are used to ease this
disruption. In the case where a freeform camera approaches an
object from a significant distance, a field of influence around the
object specifies how strongly the HoverCam motion is linearly
interpolated with the freeform motion. In the case where a
freeform camera is already very close to an object (fully within
the HoverCam field), motion clipping (as discussed in Section
2.5) is applied to smoothly transition to HoverCam motion.

Layers of HoverCam influence around each object are
automatically generated (see Figure 5). The outer layer is quite
far from the surface and specifies a field of influence. Once a
freeform camera enters this field, the HoverCam camera is
weighted together with the freeform camera so that it will be
sucked towards the outer limit of the orbit distance (see Figure
6). Once the camera is fully controlled by the HoverCam
algorithm, it remains so until the user switches to another
navigation method. In practice, we have found it helpful for the
user to be able to specify the distance between the surface and
the camera. In our current implementation, the mouse-wheel is
used to zoom in or out to specify a new fixed distance to the
HoverCam algorithm. The HoverCam camera orbit distance will
always be between the inner limit and the outer limit unless the
user zooms out beyond the field of influence.

Figure 5. HoverCam Layers: A large outer shell acts a
type of gravity field that interpolates traditional camera
motion with the HoverCam camera motion until the
Outer Limit of the Orbit Distance is reached.

75

Figure 6. HoverCam Layers: As the camera approaches
an object, HoverCam is slowly engaged.

2.3 Different Notions of “Up”
When closely inspecting an object in an abstract empty virtual
environment, the problem of correctly orienting the camera, so
objects do not appear to be sideways or upside-down, is not
trivial. Furthermore, the model chosen to derive the up-vector at
a given camera position, or given a certain camera motion, may
alter the overall camera metaphor. We define four up-models:
Global, Local, Driving, and Custom.

Global: Consider a globe representing the earth. Regardless of
where the camera may be positioned, or how it moves, up is
typically the direction toward the North Pole. For example,
whether the user is looking at Australia or Sweden, the camera
would be oriented so that the North Pole would be toward the
top of the screen. If the user moved across the North Pole from
Canada to Russia, the camera would effectively spin about 180˚
so that it would come down on the Russian side, but with the
North Pole still toward the top of the screen. This constant up-
vector high above the center of the scene defines our Global Up-
Vector Model as shown in Figure 7.

Figure 7. Global Up-Vector Model.

Local: In this egocentric model, the up-vector is view dependent
and always points toward the top of the viewport. Therefore,
moving the cursor left or right does not affect the up-vector.
However, moving up or down causes the up-vector to be
corrected so that the user never feels as though they have turned.
For example, when moving over the North Pole of a globe from
Canada to Russia, if Canada initially looked the right way up,
Russia would appear upside-down. See Figure 8.

Figure 8. Local Up-Vector Model.

Driving: For some objects, the user may wish to have the feeling
that moving the input device left or right should turn the object
so that moving (the device) up is always “forward”. Again,
using the globe as an example, if we started over Brazil with the
equator horizontal across the view and we moved the input
device to the right, the horizon would rotate in the view until
vertical, with the North Pole toward the left hand side of the
screen. See Figure 9. This model could also be considered for a
“flying” camera metaphor since it smoothly banks the camera in
the left or right direction of mouse motion.

Figure 9. Driving Up-Vector Model.

Custom: Finally, some objects may require custom up-vector
fields. For example, a model of an automobile would normally
have the up-vector point from the car to high above the top of
the roof. However, if a user was looking underneath the car or
above the car, it may seem proper to have up be towards the
hood. In this case, custom up-vectors could be placed on the
sides of an enclosing cube, which would be interpolated based
on the current camera position, to determine the current up-
vector. In our current implementation, the user can move to any
point in space and press a hotkey to generate an up-vector at the
current position and orientation. In this way, a complex up-
vector field may be authored. See Figure 10.

Figure 10. Custom Up-Vector Model.

76

2.4 Input Mapping
The mapping of mouse motion to camera motion may either be
push (egocentric) or pull (exocentric). In a push mapping, the
user conceptually pushes the camera so that, for example,
moving the mouse from left to right would push the camera to
the right causing the model to appear to move left. With a pull
mapping, the user pulls the world in the direction of motion so
that dragging from left to right moves the object from left to
right, achieved by moving the camera to the left.

The name of our technique –HoverCam– implies that the user is
controlling a craft floating above the surface of an object and so
one may expect the push mapping to be most effective.
However, given our object inspection metaphor, we typically
expect to be very close to the object so that it fills most of the
display. As such, when the user clicks to drag the mouse, the
cursor will typically be over the object when the mouse button is
clicked. This strongly conveys a metaphor of grabbing the
object at that position and dragging it in the mouse direction,
which implies that the camera will move in the opposite
direction. For this reason, we chose the pull mapping.

Still, during a single click-drag-release input event series, a
discrepancy can occur between the direction that the input
device is moving and the intended camera motion in the scene.
For example, for the camera motion shown in Figure 7, the user
would move the mouse down until they reached the North Pole,
but continuing to move down would do nothing. To move down
the other side, the user would have to move the mouse in an
upward direction. This can make the user feel as though they are
“stuck” and this can be fairly confusing. To fix this discrepancy,
HoverCam uses two up-models: one for internal calculations
and one for display to the user. Internally, the Local up-model is
used, which will move continuously across the top of the globe
in a single drag motion without getting stuck, as shown in
Figure 8. However, the up effect that the user sees may be any
one of the four methods described above. This is implemented
by applying the Local model to the camera position and
orientation, followed by the application of the chosen up-model.
As this update is applied during every mouse-move event, the
user only feels the effect of the chosen up-model.

An appropriate choice for the up-vector model may be highly
content dependent and may be a user preference or may be
uniquely associated with each model in a scene.

2.5 Fighting Cavities
This basic algorithm shown in Figure 2 nicely handles simple
convex surfaces, slightly concave surfaces, and jumps across
gaps or holes. However, the true closest point may be outside
the current field of view (FOV) or may even be behind the
camera. In these cases, turning the camera to immediately face
the new closest point would be quite disorienting and may result
in some undesirable effects. This can occur if the object has
protrusions, or cavities. When gliding over a cavity, for
example, the closest point will jump from one edge of the cavity
to the other. Step (e) of the algorithm clips the final distance
traveled (of both the eye and the look-at point) to minimize
these effects, slowly turning the camera to the intended position.

Specifically, to maintain smooth camera motion, Step (e) looks
at the vectors (see Figure 11) from the old closest point to the
new closest point (L0L2) and from the old eye position to the
new eye position (E0E2). We then clip these vectors to the length

δ of the input vector i generated by the mouse move. This
creates the final eye to look-at vector E3L3.

Figure 11. Motion Clipping. The final position of E0
and L0 are clipped from E2 and L2 to E3 and L3.

This motion-clipping step handles sharp camera turns and jumps
across holes in an object or jumps across gaps to other objects.
Figure 12 shows the HoverCam camera path while moving
across the top of a torus (from left to right). Note how extra
steps are generated across the hole in the torus, when the closest
point is on the right-hand side, to smoothly turn toward the other
side of the torus to continue around it.

Figure 12. When moving across the hole in the torus
(from left to right), HoverCam generates the extra steps
needed to maintain smooth motion.

However, the camera motion shown in Figure 12 is only
possible with an additional constraint. At the point where the
camera is directly over the center of the torus, there are an
infinite number of solutions when searching for the closest
point. To resolve cases such as this, and to favor the user input,
a restricted FOV constraint is added in step (b) to only look for
the closest point in the general direction of the input vector (see
Figure 13). There are two inputs to this constraint: the input
vector i and the angle of the field of view β. In our current
implementation, β is fixed at 45˚, but could be based on the
view frustum. P0 is the point along the vector formed by adding
i to L0 and ensuring L0E0P0 is ½ β. All geometry outside the
triangular wedge determined by E0L0P0, with a thickness of 2δ
and a length extending infinitely away from E0, is disregarded
during the search for the closest point to E0.

Figure 13. Restricted Search FOV. By restricting the
search volume for a new closest point, the camera
motion favors the user input.

77

This constraint helps HoverCam to handle a number of
situations. In the torus example, a new closest point is found
directly across the hole and the motion clipping turns the camera
toward it. In concave shapes, where again, an infinite number of
points are all equally close to the eye position, the user input
helps to uniquely select a subset of results (see Figure 14).

Figure 14. When moving across the inside of an open
sphere (from left to right), the Restricted Search FOV
and the motion clipping work together to create the
expected camera motion.

To summarize, the restricted FOV for searching (in step (b))
taken together with the motion clipping (step (e)), handle the
cases where there are multiple solutions thereby providing the
expected camera motion.

2.6 Handling Sharp Turns
While the basic camera update steps outlined above generate
smooth camera motion paths, tight corners can create hooks in
the path that could be avoided. The problem is caused by the
restricted search FOV that prevents the algorithm from finding
an upcoming corner. For example, when moving right along a
wall towards a corner, HoverCam looks directly ahead at the
wall while panning right. However, the restricted FOV prevents
HoverCam from seeing the approaching corner. The corner will
eventually be found but this will push the camera back to the
fixed distance from the surface effectively generating a hook in
the camera path (see Figure 15).

Figure 15. Hook in camera motion path when turning in
a corner while moving left to right (from A to D).

To achieve the preferred trajectory, HoverCam includes a
second FOV that searches for obstacles in the direction of
motion (see Figure 16). The search for the closest point then
includes both the restricted search FOV and the obstacle FOV.
The closest point in either FOV will be considered to be the
target point that we would like to veer towards.

Figure 16. Restricted FOV along underlying surface
and Obstacle FOV looking ahead in the direction of
movement, as specified by the input vector i.

Now, when a corner is reached, the camera correctly turns in the
direction of the input until it continues along the next wall (see
Figure 17). The imminent collision with the wall is detected and
the closest point will then be contained on that wall. Several
steps are made while the camera turns toward it after which the
camera carries on normally.

Figure 17. No hook in camera motion path when
turning in a corner, while moving left to right (from A
to C).

3 Implementation
We implemented a HoverCam prototype application in C++
under Windows XP. We added basic functionality for loading
Wavefront (obj) models and rendering them using of the
OpenGL graphics library. We also added visualization functions
to record user input and draw the motion paths shown in the
figures in this paper.

As outlined above, the general HoverCam algorithm is based on
a closest point search across a polygon mesh. For obvious
reasons, the naïve approach of iterating through every polygon
in the model for closest point analysis would be too costly to be
used for an interactive operation such as HoverCam. We
therefore generate an indexing structure called a sphere-tree
when the user loads an object. The sphere-tree is a hierarchal
structure that encloses the polygons within our model (see
Figure 18) and is built using a modified octree algorithm.

Figure 18. Six successive levels of a sphere-tree
enclosing a 3D bunny model. Notice how closely the
sphere-tree represents the model at the low levels.

78

To compute an approximate closest point on the surface of the
mesh, we perform a top-down traversal of our sphere-tree,
maintaining a list of all the spheres that satisfy our FOV
constraints. If a sphere fails to be within either of our FOVs, we
eliminate it from the list without exploring any of its children. In
this manner, we eliminate a large majority of our polygons from
the closest point analysis. As a further optimization, we also
find the distance from the query point to the far end of each
sphere, and eliminate all the spheres further than the current
minimum distance. The traversal terminates when the bottom of
the sphere-tree is reached, and the result is a list of the smallest
spheres from the lowest level. The polygons contained within
these spheres are then subjected to regular closest point analysis.

It is often the case that some of the polygons lie on the boundary
of our restricted FOV. For these polygons, if the true closest
point is outside the FOV, then the closest point we are interested
in will lie along the intersection of our FOV with the polygon.
When this happens, we perform a ray-casting technique about
the perimeter of the FOV, finding the closest intersection of a
ray with the polygon. If our search method ignored these cases,
HoverCam would mistakenly only select closest points on
polygons completely within the FOV.

4 Limitations
Our HoverCam algorithm essentially handles all static 3D
models. The model can have significant protrusions and cavities
(convex and concave areas) and may even be interior spaces
such as a game level. However, moving objects may not always
be handled properly, especially if moving faster than the
camera. Also, models with very fine protrusions around the
camera may not be found if they fall between the two FOVs
being used. Any of these conditions may cause HoverCam to
move inside the object or to miss it entirely.

Another limitation exists in the closest point search method. If a
fast search method cannot be provided to HoverCam, interactive
rates will suffer. For example, the automobile model in Figure
10 has 21,000 polygons unevenly distributed in space. Due to
the high concentration of thousands of polygons in the wheels of
the car, gliding across the wheels noticeably slows camera
movement, despite a fairly efficient sphere tree implementation.

5 Initial Impressions
We showed HoverCam to six target users who were advanced
3D modelers and animators to get their initial impression. After
describing the basic interaction model, we asked them to use
HoverCam to inspect one of our 3D car models. All of them
understood the concept and interaction mechanisms and could
easily inspect the car. The camera orientation (including up-
model) worked exceptionally well. In addition, a few of the
users opted to use both the HoverCam and at times the
traditional camera controls to inspect the car. Our system
seamlessly blended the two camera styles. Finally, one user
commented that HoverCam is "better than shifting between
individual modes."

The most distracting usability issue appears to be the
"shakiness" of the HoverCam technique as many users
commented on the problem. This is an artifact of following
facetted surfaces too closely. We can easily address this by
smoothing normals or smoothing the model mesh. For future

work, we may add level of detail support so that when
HoverCam is further from the object, a smoother version of the
model can be used to control the camera. In addition, two of the
users requested the ability to get to an exactly framed spot (e.g.,
a close-up of a side mirror). The orbit distance inner limit must
be small enough to allow for these types of close-up shots as we
learned that our initial inner limit distance was too large. In the
end, all of the users saw the value of HoverCam.

6 Related Work
A great deal of prior research has explored camera techniques
for 3D virtual environments. Many of the techniques use 2D
input from a mouse or stylus and introduce metaphors to assist
the user. The most pervasive metaphor is the cinematic camera
model, enabling users to rotate, pan and zoom the viewpoint.
Researchers have also explored other camera metaphors
including orbiting and flying [Tan et al. 2001], using constraints
[Mackinlay et al. 1990; Smith et al. 2001], drawing a path
[Igarashi et al. 1998], through-the-lens control [Gliecher and
Witkin 1992], points and areas of interests [Jul and Furnas
1998], two-handed techniques [Balakrishnan and Kurtenbach
1999; Zeleznik et al. 1997], and combinations of techniques
[Steed 1997; Zeleznik and Forsberg 1999]. Bowman et. al.
present taxonomies and evaluations of various interactions and
camera models [1997; 1999].

Systems that utilize higher degree-of-freedom input devices
offer additional control and alternative metaphors have been
investigated, including flying [Chapman and Ware 1992; Ware
and Fleet 1997], eyeball-in-hand [Ware and Osborne 1990], and
worlds in miniature [Stoakley et al. 1995]. Other techniques
involve automatic framing of the areas of interest as typically
found in game console based adventure games which use a
“chase airplane” metaphor for a third person perspective. Rules
can also be defined, for cameras to automatically frame a scene,
that follow cinematic principles such as keeping the virtual
actors visible in the scene; or following the lead actor [He et al.
1996]. Researchers have also investigated so-called guided tours
where camera paths are procedurally determined or pre-
specified for the end user to travel along. Galyean [1995]
proposes a “river analogy” where a user, on a metaphorical boat,
can deviate somewhat from the river, by steering using a
conceptual “rudder”. Hanson and Wernert [1997; 1999] propose
“virtual sidewalks” which combine virtual surfaces and specific
gaze direction, and vistas along the sidewalk. Wan et al.
determine a best path for automatic fly-through medical
applications [2001].

The most directly related work is the UniCam [Zeleznik and
Forsberg 1999] click-to-focus feature and the Tan et al. [2001]
navigation system. Both of these systems are suites of camera
manipulation tools and both have one feature that examines the
in-scene geometry. Once the user has clicked on an object of
interest, a camera path is generated to move and orient the
camera toward the selected target point. The UniCam system
animates the view to the new position while the Tan system uses
keyboard keys to move along the generated path.

Our technique differs from these in that an updated position and
orientation is interactively generated so the user is continuously
in control of the camera motion and can change directions at any
time. Also, the two systems mentioned do not perform collision
detection or obstruction detection and so, may pass through

79

other polygons. Finally, HoverCam handles convex and concave
shapes and models an up-vector field, whereas neither of the
other systems address these aspects of navigation.

7 Other Applications: Volumetric Operations
In addition to surface based navigation, HoverCam can be used
to intelligently view geometry without well-defined surfaces
such as curves in space, point cloud data sets, or volumetric
densities. To support navigation about lines or points, only the
closest point search function must be changed. Figure 19 shows
a HoverCam camera path made by a user moving around a set
of randomly generated points (drawn as small spheres). The
displayed camera path shows that HoverCam keeps the cloud
data as the center of interest as the user moves around the cloud
from right to left.

Figure 19. HoverCam Navigation about a Point Cloud.

The HoverCam algorithm can also be used to create volumetric
densities. With an additional button, HoverCam can perform
other operations such as selection or painting. Figure 20 shows a
curve in space around which HoverCam can travel. When the
user presses a modifier key, HoverCam leaves a paint trail as it
moves about the curve. By increasing or decreasing the orbit
distance, the user can paint closer or further from the base curve.

Figure 20. Painting volumetric density with HoverCam.

8 Conclusion
In this paper we introduced a new technique for interactive
object inspection called HoverCam. The fundamental principle
is to move the camera, under a small set of constraints including
collision detection in the hover direction and the motion
direction, followed by a small number of corrections, to
maintain the hover distance from the object.

There are a number of applications of this algorithm including
object inspection, volumetric operations, and interior navigation.
The primary benefit to users is a simplified interaction that only
requires 2D input, which can be engaged with just one button or
control. Also, for object inspection, novice users can move

around an object without moving to awkward positions or
orientations.

Acknowledgments
The authors thank the participants of our user study, and Don
Almeida for early implementation work.

References
BALAKRISHNAN, R. and KURTENBACH, G. 1999. Exploring bimanual

camera control and object manipulation in 3D graphics interfaces.
ACM CHI. 56-63.

BOWMAN, D., JOHNSON, D. and HODGES, L. 1997. Travel in immersive
virtual environments. IEEE VRAIS. 45-52.

BOWMAN, D., JOHNSON, D. and HODGES, L. 1999. Testbed environment
of virtual environment interaction. ACM VRST. 26-33.

CHAPMAN, D. and WARE, C. 1992. Manipulating the future: predictor
based feedback for velocity control in virtual environment
navigation. ACM Symposium on Interactive 3D Graphics. 63-66.

GALYEAN, T. 1995. Guided navigation of virtual environments. ACM
Symposium on Interactive 3D Graphics. 103-104.

GLIECHER, M. and WITKIN, A. 1992. Through-the-lens camera control.
ACM SIGGRAPH 92. 331-340.

HANSON, A. and WERNET, E. 1997. Constrained 3D navigation with 2D
controllers. IEEE Visulization. 175-182.

HE, L., COHEN, M. and SALESIN, D. 1996. The virtual cinematographer:
a paradigm for automatic real-time camera control and directing.
ACM SIGGRAPH 96. 217-224.

IGARASHI, T., KADOBAYASHI, R., MASE, K. and TANAKA, H. 1998. Path
drawing for 3D walkthrough. ACM UIST. 173-174.

JUL, S. and FURNAS, G. 1998. Critical zones in desert fog: aids to
multiscale navigation. ACM UIST. 97-106.

MACKINLAY, J., CARD, S. and ROBERTSON, G. 1990. Rapid controlled
movement through a virtual 3D workspace. ACM SIGGRAPH 90.
171-176.

SMITH, G., SALZMAN, T. and STUERZLINGER, W. 2001. 3D Scene
manipulation with 2D devices and constraints. Graphics Interface.
135-142.

STEED, A. 1997. Efficient navigation around complex virtual
environments. ACM VRST. 173-180.

STOAKLEY, R., CONWAY, M. and PAUSCH, R. 1995. Virtual reality on a
WIM: Interactive worlds in miniature. ACM CHI. 265-272.

TAN, D., ROBERTSON, G. and CZERWINSKI, M. 2001. Exploring 3D
navigation: combining speed-coupled flying with orbiting. ACM
CHI. 418-425.

WAN, M., DACHILLE, F. and KAUFMAN, A. 2001. Distance-Field Based
Skeletons for Virtual Navigation. IEEE Visualization 2001. 239-
245.

WARE, C. and FLEET, D. 1997. Context sensitve flying interface. ACM
Symposium on Interactive 3D Graphics. 127-130.

WARE, C. and OSBORNE, S. 1990. Exploration and virtual camera
control in virtual three dimensional environments. ACM
Symposium on Interactive 3D Graphics. 175-183.

WERNERT, E. and HANSON, A. 1999. A framework for assisted
exploration with collaboration. IEEE Visualization. 241-248.

ZELEZNIK, R. and FORSBERG, A. 1999. UniCam - 2D Gestural Camera
Controls for 3D Environments. ACM Symposium on Interactive 3D
Graphics. 169-173.

ZELEZNIK, R., FORSBERG, A. and STRAUSS, P. 1997. Two pointer input
for 3D interaction. ACM Symposium on Interactive 3D Graphics.
115-120.

80

