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Abstract 
 
We describe a new interaction technique, called HoverCam, for 
navigating around 3D objects at close proximity. When a user is 
closely inspecting an object, the camera motions needed to move 
across its surface can become complex. For tasks such as 3D 
painting or modeling small detail features, users will often try to 
keep the camera a small distance above the surface. To achieve 
this automatically, HoverCam intelligently integrates tumbling, 
panning, and zooming camera controls into a single operation. 
This allows the user to focus on the task at hand instead of 
continuously managing the camera position and orientation. In 
this paper we show unique affordances of the technique and 
define the behavior and implementation of HoverCam. We also 
show how the technique can be used for navigating about data 
sets without well-defined surfaces such as point clouds and 
curves in space.  

Categories and Subject Descriptors: I.3.6 [Computer Graphics]: 
Methodology and Techniques – Interaction Techniques; H.5.2 
[Information Interfaces And Presentation (HCI)]: User Interfaces – 
Interaction styles, Input devices and strategies. 
Additional Keywords and Phrases: interaction techniques, camera 
controls, 3D navigation, 3D viewers, 3D visualization. 

1    Introduction 
The most commonly used operation in 3D computer graphics 
and animation software is camera movement. Users often move 
the camera to help them sense the 3D properties of a model or 
animation or while performing modifications. When working at 
close proximity to an object like, for example, when painting 
details on an object, the camera must often be moved to see 
neighboring surfaces. However, despite the heavy usage of 
camera tools in 3D content creation software, the industry 
standard zoom, pan, and tumble tools have been the primary 
camera controls offered to users for over a decade. 

 

For keyboard and mouse based user interfaces, interactive 3D 
camera control is fundamentally difficult because the task 
involves controlling the six distinct degrees of freedom (DOF) 
(translation x,y,z and rotation α,β,χ) of the virtual camera with 
just two DOF of mouse input. The simplest approach is to 
assign the two DOFs of the mouse to two different DOFs of the 
camera, at different times. However, more sophisticated 
approaches that emulate real world behaviors, or better match 
the task at hand and/or the skills of the user, have largely 
replaced the simple approach. For example, the industry 
standard zoom, pan, and tumble tools reflect typical methods of 
controlling physical camera from the film production industry. 
Even more sophisticated camera control techniques take into 
account information about the scene. For example, 3D video 
games often have a walking metaphor of camera motion. This 
metaphor suggests many things: there is a ground plane, the 
viewpoint is somewhat above the ground, camera rotation is 
egocentric, there is notion of which way is “up”, etc. These 
constraints simplify camera motion from a general 6 DOF 
problem to almost a 2 DOF problem. Further constraints, such 
as collision detection, prevent the camera from passing through 
walls, characters, and objects in the scene. This entire set of 
constraints is needed to convey the walking camera metaphor. 

The camera metaphor we explore in this paper is navigation 
around 3D objects at close proximity.  For this task, we would 
like to move around the object while maintaining a fixed 
distance from the surface and while keeping the object roughly 
centered in the field of view. We call this metaphor object 
inspection. As with the walking metaphor described above, we 
attempt to use as many constraints as possible, given by the 
context of our metaphor, to simplify the number of controls 
needed to navigate through space during typical object 
inspection. 

 

Figure 1. Desired HoverCam motion over a sphere and 
a cube (shown in profile). 
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2    HoverCam 
Figure 1 shows the type of camera motion behavior we would 
like for a simple sphere and cube. Note that given the 
constraints of (1) keeping the camera a fixed distance from the 
surface and (2) relatively normal to the surface effectively 
creates a shell around the object being observed, on which the 
camera can be positioned. Around curved surfaces, the camera 
follows the surface but at a fixed distance. Around corners, the 
camera turns to smoothly move toward a neighboring surface. 
Finally, around flat surfaces, like the side of the cube, the 
camera pans as expected to keep the underlying surface facing 
the viewpoint. 

Camera paths like these can be achieved using the traditional 
separate pan, zoom, and tumble tools but at the cost of 
constantly switching between the three tools. Also, as these 
tools do not typically perform any collision detection, users may 
end up in awkward locations inside the object, looking away 
from the object, or at great distances for the object. For 
example, in Alias’ Maya software, the system is placed in 
camera mode by holding down the alt-key. Dragging with the 
left mouse button then tumbles the camera (rotates about the 
current look-at point). Dragging the middle mouse button pans 
the camera (translates the eye and the look-at point) and 
dragging with both left and middle mouse buttons performs 
zooming (moving the eye toward or away from the look-at 
point). Releasing the alt-key stops the camera tool and reselects 
the user’s previous tool.  

A smooth camera path around the outside of an object is simply 
not achievable with these separate tools. To keep a point of 
interest on the surface of the object near the center of the view, 
the user must always overshoot, switch tools, correct the view 
with another tool, overshoot again, and so on.  

2.1    Basic HoverCam Algorithm 
A smooth camera path can be achieved with a trajectory 
algorithm loosely based on the model of a satellite orbiting an 
object with a gravity field (see Figure 2). The steps performed 
are: 

(a) apply user input to the eye point E0 (current camera 
position) and look-at point L0, to create E1 and L1,  

(b) search for the closest point C on the object from the 
new eye position E1,  

(c) turn the camera to look at C, and, 
(d) correct the distance δ1 to the object to match the 

original distance to the object δ to generate the final 
eye position E2. 

(e) clip the distance traveled (discussed in Section 2.5). 

This algorithm, in effect, selectively combines the operations for 
zooming, panning, and tumbling during a single mouse drag. 
This has the advantage that HoverCam only requires a single 
button mouse, pen-press, or a single finger press on a touch 
screen to apply camera motion. In contrast, as mentioned earlier, 
standard zoom, pan, and tumble tools typically require multiple 
buttons to switch between the operations for zooming, panning 
and tumbling. Furthermore, to achieve HoverCam motion with 
the traditional separate tools would require ongoing switching of 
the tools to continually correct the camera motion to follow the 
surface. 

 

Figure 2. Basic Camera Update Rules. (a) move eye 
based on user input, (b) look for C, closest point on 
object, (c) turn camera to C, and (d) correct distance. 

Using HoverCam has the feeling of hovering above the object. 
Figure 3 shows two sets of screen images showing the user’s 
perspective as HoverCam is being used to inspect a cube and a 
cylinder, maintaining a consistent scale and distance from the 
object. Note how HoverCam pans on the side of the cube, and 
turns about the corner of the cube. Also note that on the 
cylinder, the camera pans along the shaft, turns smoothly to the 
end disc, and pans across the disc.  

To highlight the difference between traditional center-based 
camera motion and surface-based camera motion, see the 
example of motion about a cylinder in Figure 4. With the simple 
traditional tumble, the rotation about the cylinder would have 
placed the camera inside the object. However, with HoverCam, 
moving to the right pans the camera until it can rotate about to 
continue panning across the end disc. 
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Figure 3. HoverCam around a cube and a cylinder, 
from the point of view of the user. 

 

Figure 4. Simple Rotation versus HoverCam: The grey 
path shows how a simple rotation about the center of a 
cylinder leaves the camera within the object. However, 
HoverCam moves the camera along the cylinder and 
only rotates when turning about the end of the shaft 
(black path). 

2.2    Blending Camera Techniques 
As HoverCam would normally be used together with traditional 
freeform navigation tools, we have designed HoverCam to 
interoperate between the various camera techniques in a fairly 
seamless way. Freeform camera motion allows the user to 
navigate to any point in space and to face in any direction. For 
specific surface-based tasks like 3D painting or sculpting, 
HoverCam provides a subset of this freedom with the benefit of 
following the surface. Switching from HoverCam to a freeform 
camera could simply be invoked by clicking on a tool icon or by 
a key press. However, switching from a freeform camera to 
HoverCam may cause an abrupt reorientation and reposition of 
the camera because an initial search may find a result quite far 
from the current view. Two methods are used to ease this 
disruption. In the case where a freeform camera approaches an 
object from a significant distance, a field of influence around the 
object specifies how strongly the HoverCam motion is linearly 
interpolated with the freeform motion. In the case where a 
freeform camera is already very close to an object (fully within 
the HoverCam field), motion clipping (as discussed in Section 
2.5) is applied to smoothly transition to HoverCam motion. 

Layers of HoverCam influence around each object are 
automatically generated (see Figure 5). The outer layer is quite 
far from the surface and specifies a field of influence.  Once a 
freeform camera enters this field, the HoverCam camera is 
weighted together with the freeform camera so that it will be 
sucked towards the outer limit of the orbit distance (see Figure 
6). Once the camera is fully controlled by the HoverCam 
algorithm, it remains so until the user switches to another 
navigation method. In practice, we have found it helpful for the 
user to be able to specify the distance between the surface and 
the camera. In our current implementation, the mouse-wheel is 
used to zoom in or out to specify a new fixed distance to the 
HoverCam algorithm. The HoverCam camera orbit distance will 
always be between the inner limit and the outer limit unless the 
user zooms out beyond the field of influence. 

 

Figure 5. HoverCam Layers: A large outer shell acts a 
type of gravity field that interpolates traditional camera 
motion with the HoverCam camera motion until the 
Outer Limit of the Orbit Distance is reached.  
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Figure 6. HoverCam Layers: As the camera approaches 
an object, HoverCam is slowly engaged. 

2.3    Different Notions of “Up” 
When closely inspecting an object in an abstract empty virtual 
environment, the problem of correctly orienting the camera, so 
objects do not appear to be sideways or upside-down, is not 
trivial. Furthermore, the model chosen to derive the up-vector at 
a given camera position, or given a certain camera motion, may 
alter the overall camera metaphor. We define four up-models: 
Global, Local, Driving, and Custom. 

Global: Consider a globe representing the earth. Regardless of 
where the camera may be positioned, or how it moves, up is 
typically the direction toward the North Pole. For example, 
whether the user is looking at Australia or Sweden, the camera 
would be oriented so that the North Pole would be toward the 
top of the screen. If the user moved across the North Pole from 
Canada to Russia, the camera would effectively spin about 180˚ 
so that it would come down on the Russian side, but with the 
North Pole still toward the top of the screen. This constant up-
vector high above the center of the scene defines our Global Up-
Vector Model as shown in Figure 7. 

 
Figure 7. Global Up-Vector Model. 

Local: In this egocentric model, the up-vector is view dependent 
and always points toward the top of the viewport. Therefore, 
moving the cursor left or right does not affect the up-vector. 
However, moving up or down causes the up-vector to be 
corrected so that the user never feels as though they have turned. 
For example, when moving over the North Pole of a globe from 
Canada to Russia, if Canada initially looked the right way up, 
Russia would appear upside-down. See Figure 8. 

 
Figure 8. Local Up-Vector Model. 

Driving: For some objects, the user may wish to have the feeling 
that moving the input device left or right should turn the object 
so that moving (the device) up is always “forward”. Again, 
using the globe as an example, if we started over Brazil with the 
equator horizontal across the view and we moved the input 
device to the right, the horizon would rotate in the view until 
vertical, with the North Pole toward the left hand side of the 
screen. See Figure 9. This model could also be considered for a 
“flying” camera metaphor since it smoothly banks the camera in 
the left or right direction of mouse motion. 

 

Figure 9. Driving Up-Vector Model. 

Custom: Finally, some objects may require custom up-vector 
fields. For example, a model of an automobile would normally 
have the up-vector point from the car to high above the top of 
the roof.  However, if a user was looking underneath the car or 
above the car, it may seem proper to have up be towards the 
hood. In this case, custom up-vectors could be placed on the 
sides of an enclosing cube, which would be interpolated based 
on the current camera position, to determine the current up-
vector. In our current implementation, the user can move to any 
point in space and press a hotkey to generate an up-vector at the 
current position and orientation.  In this way, a complex up-
vector field may be authored. See Figure 10. 

 

Figure 10. Custom Up-Vector Model. 
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2.4    Input Mapping 
The mapping of mouse motion to camera motion may either be 
push (egocentric) or pull (exocentric). In a push mapping, the 
user conceptually pushes the camera so that, for example, 
moving the mouse from left to right would push the camera to 
the right causing the model to appear to move left. With a pull 
mapping, the user pulls the world in the direction of motion so 
that dragging from left to right moves the object from left to 
right, achieved by moving the camera to the left. 

The name of our technique –HoverCam– implies that the user is 
controlling a craft floating above the surface of an object and so 
one may expect the push mapping to be most effective. 
However, given our object inspection metaphor, we typically 
expect to be very close to the object so that it fills most of the 
display. As such, when the user clicks to drag the mouse, the 
cursor will typically be over the object when the mouse button is 
clicked. This strongly conveys a metaphor of grabbing the 
object at that position and dragging it in the mouse direction, 
which implies that the camera will move in the opposite 
direction. For this reason, we chose the pull mapping. 

Still, during a single click-drag-release input event series, a 
discrepancy can occur between the direction that the input 
device is moving and the intended camera motion in the scene. 
For example, for the camera motion shown in Figure 7, the user 
would move the mouse down until they reached the North Pole, 
but continuing to move down would do nothing. To move down 
the other side, the user would have to move the mouse in an 
upward direction. This can make the user feel as though they are 
“stuck” and this can be fairly confusing. To fix this discrepancy, 
HoverCam uses two up-models: one for internal calculations 
and one for display to the user. Internally, the Local up-model is 
used, which will move continuously across the top of the globe 
in a single drag motion without getting stuck, as shown in 
Figure 8. However, the up effect that the user sees may be any 
one of the four methods described above. This is implemented 
by applying the Local model to the camera position and 
orientation, followed by the application of the chosen up-model. 
As this update is applied during every mouse-move event, the 
user only feels the effect of the chosen up-model. 

An appropriate choice for the up-vector model may be highly 
content dependent and may be a user preference or may be 
uniquely associated with each model in a scene. 

2.5    Fighting Cavities 
This basic algorithm shown in Figure 2 nicely handles simple 
convex surfaces, slightly concave surfaces, and jumps across 
gaps or holes. However, the true closest point may be outside 
the current field of view (FOV) or may even be behind the 
camera. In these cases, turning the camera to immediately face 
the new closest point would be quite disorienting and may result 
in some undesirable effects. This can occur if the object has 
protrusions, or cavities.  When gliding over a cavity, for 
example, the closest point will jump from one edge of the cavity 
to the other. Step (e) of the algorithm clips the final distance 
traveled (of both the eye and the look-at point) to minimize 
these effects, slowly turning the camera to the intended position. 

Specifically, to maintain smooth camera motion, Step (e) looks 
at the vectors (see Figure 11) from the old closest point to the 
new closest point (L0L2) and from the old eye position to the 
new eye position (E0E2). We then clip these vectors to the length 

δ of the input vector i generated by the mouse move. This 
creates the final eye to look-at vector E3L3. 

 
Figure 11. Motion Clipping. The final position of E0 
and L0 are clipped from E2 and L2 to E3 and L3. 

This motion-clipping step handles sharp camera turns and jumps 
across holes in an object or jumps across gaps to other objects. 
Figure 12 shows the HoverCam camera path while moving 
across the top of a torus (from left to right). Note how extra 
steps are generated across the hole in the torus, when the closest 
point is on the right-hand side, to smoothly turn toward the other 
side of the torus to continue around it. 

 
Figure 12. When moving across the hole in the torus 
(from left to right), HoverCam generates the extra steps 
needed to maintain smooth motion. 

However, the camera motion shown in Figure 12 is only 
possible with an additional constraint. At the point where the 
camera is directly over the center of the torus, there are an 
infinite number of solutions when searching for the closest 
point. To resolve cases such as this, and to favor the user input, 
a restricted FOV constraint is added in step (b) to only look for 
the closest point in the general direction of the input vector (see 
Figure 13). There are two inputs to this constraint: the input 
vector i and the angle of the field of view β. In our current 
implementation, β is fixed at 45˚, but could be based on the 
view frustum. P0 is the point along the vector formed by adding 
i to L0 and ensuring L0E0P0 is ½ β. All geometry outside the 
triangular wedge determined by E0L0P0, with a thickness of 2δ 
and a length extending infinitely away from E0, is disregarded 
during the search for the closest point to E0.  

 
Figure 13. Restricted Search FOV. By restricting the 
search volume for a new closest point, the camera 
motion favors the user input. 
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This constraint helps HoverCam to handle a number of 
situations. In the torus example, a new closest point is found 
directly across the hole and the motion clipping turns the camera 
toward it. In concave shapes, where again, an infinite number of 
points are all equally close to the eye position, the user input 
helps to uniquely select a subset of results (see Figure 14). 

 

Figure 14. When moving across the inside of an open 
sphere (from left to right), the Restricted Search FOV 
and the motion clipping work together to create the 
expected camera motion. 

To summarize, the restricted FOV for searching (in step (b)) 
taken together with the motion clipping (step (e)), handle the 
cases where there are multiple solutions thereby providing the 
expected camera motion. 

2.6    Handling Sharp Turns 
While the basic camera update steps outlined above generate 
smooth camera motion paths, tight corners can create hooks in 
the path that could be avoided. The problem is caused by the 
restricted search FOV that prevents the algorithm from finding 
an upcoming corner. For example, when moving right along a 
wall towards a corner, HoverCam looks directly ahead at the 
wall while panning right. However, the restricted FOV prevents 
HoverCam from seeing the approaching corner. The corner will 
eventually be found but this will push the camera back to the 
fixed distance from the surface effectively generating a hook in 
the camera path (see Figure 15). 

 

Figure 15. Hook in camera motion path when turning in 
a corner while moving left to right (from A to D). 

To achieve the preferred trajectory, HoverCam includes a 
second FOV that searches for obstacles in the direction of 
motion (see Figure 16). The search for the closest point then 
includes both the restricted search FOV and the obstacle FOV. 
The closest point in either FOV will be considered to be the 
target point that we would like to veer towards. 

 

Figure 16. Restricted FOV along underlying surface 
and Obstacle FOV looking ahead in the direction of 
movement, as specified by the input vector i. 

Now, when a corner is reached, the camera correctly turns in the 
direction of the input until it continues along the next wall (see 
Figure 17). The imminent collision with the wall is detected and 
the closest point will then be contained on that wall. Several 
steps are made while the camera turns toward it after which the 
camera carries on normally. 

 

Figure 17. No hook in camera motion path when 
turning in a corner, while moving left to right (from A 
to C). 

3    Implementation 
We implemented a HoverCam prototype application in C++ 
under Windows XP. We added basic functionality for loading 
Wavefront (obj) models and rendering them using of the 
OpenGL graphics library. We also added visualization functions 
to record user input and draw the motion paths shown in the 
figures in this paper. 

As outlined above, the general HoverCam algorithm is based on 
a closest point search across a polygon mesh. For obvious 
reasons, the naïve approach of iterating through every polygon 
in the model for closest point analysis would be too costly to be 
used for an interactive operation such as HoverCam. We 
therefore generate an indexing structure called a sphere-tree 
when the user loads an object. The sphere-tree is a hierarchal 
structure that encloses the polygons within our model (see 
Figure 18) and is built using a modified octree algorithm.     

 

Figure 18.  Six successive levels of a sphere-tree 
enclosing a 3D bunny model.  Notice how closely the 
sphere-tree represents the model at the low levels. 
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To compute an approximate closest point on the surface of the 
mesh, we perform a top-down traversal of our sphere-tree, 
maintaining a list of all the spheres that satisfy our FOV 
constraints.  If a sphere fails to be within either of our FOVs, we 
eliminate it from the list without exploring any of its children. In 
this manner, we eliminate a large majority of our polygons from 
the closest point analysis. As a further optimization, we also 
find the distance from the query point to the far end of each 
sphere, and eliminate all the spheres further than the current 
minimum distance.  The traversal terminates when the bottom of 
the sphere-tree is reached, and the result is a list of the smallest 
spheres from the lowest level.  The polygons contained within 
these spheres are then subjected to regular closest point analysis. 

It is often the case that some of the polygons lie on the boundary 
of our restricted FOV. For these polygons, if the true closest 
point is outside the FOV, then the closest point we are interested 
in will lie along the intersection of our FOV with the polygon.  
When this happens, we perform a ray-casting technique about 
the perimeter of the FOV, finding the closest intersection of a 
ray with the polygon. If our search method ignored these cases, 
HoverCam would mistakenly only select closest points on 
polygons completely within the FOV.  

4    Limitations 
Our HoverCam algorithm essentially handles all static 3D 
models. The model can have significant protrusions and cavities 
(convex and concave areas) and may even be interior spaces 
such as a game level. However, moving objects may not always 
be handled properly, especially if moving faster than the 
camera. Also, models with very fine protrusions around the 
camera may not be found if they fall between the two FOVs 
being used. Any of these conditions may cause HoverCam to 
move inside the object or to miss it entirely. 

Another limitation exists in the closest point search method. If a 
fast search method cannot be provided to HoverCam, interactive 
rates will suffer. For example, the automobile model in Figure 
10 has 21,000 polygons unevenly distributed in space. Due to 
the high concentration of thousands of polygons in the wheels of 
the car, gliding across the wheels noticeably slows camera 
movement, despite a fairly efficient sphere tree implementation. 

5    Initial Impressions 
We showed HoverCam to six target users who were advanced 
3D modelers and animators to get their initial impression. After 
describing the basic interaction model, we asked them to use 
HoverCam to inspect one of our 3D car models. All of them 
understood the concept and interaction mechanisms and could 
easily inspect the car. The camera orientation (including up-
model) worked exceptionally well. In addition, a few of the 
users opted to use both the HoverCam and at times the 
traditional camera controls to inspect the car. Our system 
seamlessly blended the two camera styles. Finally, one user 
commented that HoverCam is "better than shifting between 
individual modes."  

The most distracting usability issue appears to be the 
"shakiness" of the HoverCam technique as many users 
commented on the problem. This is an artifact of following 
facetted surfaces too closely. We can easily address this by 
smoothing normals or smoothing the model mesh. For future 

work, we may add level of detail support so that when 
HoverCam is further from the object, a smoother version of the 
model can be used to control the camera. In addition, two of the 
users requested the ability to get to an exactly framed spot (e.g., 
a close-up of a side mirror). The orbit distance inner limit must 
be small enough to allow for these types of close-up shots as we 
learned that our initial inner limit distance was too large. In the 
end, all of the users saw the value of HoverCam. 

6    Related Work 
A great deal of prior research has explored camera techniques 
for 3D virtual environments. Many of the techniques use 2D 
input from a mouse or stylus and introduce metaphors to assist 
the user. The most pervasive metaphor is the cinematic camera 
model, enabling users to rotate, pan and zoom the viewpoint. 
Researchers have also explored other camera metaphors 
including orbiting and flying [Tan et al. 2001], using constraints 
[Mackinlay et al. 1990; Smith et al. 2001], drawing a path 
[Igarashi et al. 1998], through-the-lens control [Gliecher and 
Witkin 1992], points and areas of interests [Jul and Furnas 
1998], two-handed techniques [Balakrishnan and Kurtenbach 
1999; Zeleznik et al. 1997], and combinations of techniques 
[Steed 1997; Zeleznik and Forsberg 1999]. Bowman et. al. 
present taxonomies and evaluations of various interactions and 
camera models [1997; 1999]. 

Systems that utilize higher degree-of-freedom input devices 
offer additional control and alternative metaphors have been 
investigated, including flying [Chapman and Ware 1992; Ware 
and Fleet 1997], eyeball-in-hand [Ware and Osborne 1990], and 
worlds in miniature [Stoakley et al. 1995]. Other techniques 
involve automatic framing of the areas of interest as typically 
found in game console based adventure games which use a 
“chase airplane” metaphor for a third person perspective. Rules 
can also be defined, for cameras to automatically frame a scene, 
that follow cinematic principles such as keeping the virtual 
actors visible in the scene; or following the lead actor [He et al. 
1996]. Researchers have also investigated so-called guided tours 
where camera paths are procedurally determined or pre-
specified for the end user to travel along. Galyean [1995] 
proposes a “river analogy” where a user, on a metaphorical boat, 
can deviate somewhat from the river, by steering using a 
conceptual “rudder”. Hanson and Wernert [1997; 1999] propose 
“virtual sidewalks” which combine virtual surfaces and specific 
gaze direction, and vistas along the sidewalk. Wan et al. 
determine a best path for automatic fly-through medical 
applications [2001]. 

The most directly related work is the UniCam [Zeleznik and 
Forsberg 1999] click-to-focus feature and the Tan et al. [2001] 
navigation system. Both of these systems are suites of camera 
manipulation tools and both have one feature that examines the 
in-scene geometry. Once the user has clicked on an object of 
interest, a camera path is generated to move and orient the 
camera toward the selected target point. The UniCam system 
animates the view to the new position while the Tan system uses 
keyboard keys to move along the generated path.  

Our technique differs from these in that an updated position and 
orientation is interactively generated so the user is continuously 
in control of the camera motion and can change directions at any 
time.  Also, the two systems mentioned do not perform collision 
detection or obstruction detection and so, may pass through 
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other polygons. Finally, HoverCam handles convex and concave 
shapes and models an up-vector field, whereas neither of the 
other systems address these aspects of navigation. 

7    Other Applications: Volumetric Operations 
In addition to surface based navigation, HoverCam can be used 
to intelligently view geometry without well-defined surfaces 
such as curves in space, point cloud data sets, or volumetric 
densities. To support navigation about lines or points, only the 
closest point search function must be changed. Figure 19 shows 
a HoverCam camera path made by a user moving around a set 
of randomly generated points (drawn as small spheres). The 
displayed camera path shows that HoverCam keeps the cloud 
data as the center of interest as the user moves around the cloud 
from right to left. 

 
Figure 19. HoverCam Navigation about a Point Cloud. 

The HoverCam algorithm can also be used to create volumetric 
densities. With an additional button, HoverCam can perform 
other operations such as selection or painting. Figure 20 shows a 
curve in space around which HoverCam can travel. When the 
user presses a modifier key, HoverCam leaves a paint trail as it 
moves about the curve. By increasing or decreasing the orbit 
distance, the user can paint closer or further from the base curve. 

 

Figure 20. Painting volumetric density with HoverCam. 

8    Conclusion 
In this paper we introduced a new technique for interactive 
object inspection called HoverCam. The fundamental principle 
is to move the camera, under a small set of constraints including 
collision detection in the hover direction and the motion 
direction, followed by a small number of corrections, to 
maintain the hover distance from the object. 

There are a number of applications of this algorithm including 
object inspection, volumetric operations, and interior navigation. 
The primary benefit to users is a simplified interaction that only 
requires 2D input, which can be engaged with just one button or 
control. Also, for object inspection, novice users can move 

around an object without moving to awkward positions or 
orientations. 
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