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Abstract

In this paper we introduce a new subdivision operator that unifies triangular and quadrilateral subdivision
schemes. Designers often want the added flexibility of having both quads and triangles in their models. It is
also well known that triangle meshes generate poor limit surfaces when using a quad scheme, while quad-only
meshes behave poorly with triangular schemes. Our new scheme is a generalization of the well known Catmull-
Clark and Loop subdivision algorithms. We show that our surfaces are C1 everywhere and provide a proof that
it is impossible to construct a C2 scheme at the quad/triangle boundary. However, we provide rules that produce
surfaces with bounded curvature at the regular quad/triangle boundary and provide optimal masks that minimize
the curvature divergence elsewhere. We demonstrate the visual quality of our surfaces with several examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

Subdivision surfaces are currently one of the most power-
ful surface representations used to model smooth shapes.
Unlike regular surface splines, such as NURBS, subdivi-
sion surfaces can handle shapes of arbitrary topology in a
unified framework. Also, unlike polygonal meshes, subdivi-
sion surfaces generate smooth surfaces, which is important
in designing aesthetically pleasing shapes. Subdivision sur-
faces were introduced in 1978 by both Catmull and Clark 2

and Doo and Sabin 3. They both generalized tensor product
B-splines of bi-degree three and two, respectively, to arbi-
trary topologies by extending the refinement rules to irreg-
ular parts of the control mesh. Later, in 1987 Loop general-
ized triangular Box splines of total degree four to arbitrary
triangular meshes 5. These subdivision schemes have the de-
sirable property that they admit a polynomial representation
on the regular part of the mesh. Consequently, these surfaces
are curvature continuous almost everywhere 7 � 12 and can be
evaluated explicitly anywhere 8.

The visual quality of a subdivision surface depends in a
crucial way on the initial, or base, mesh of control vertices.
For general shapes designers often want to model certain re-
gions with triangle patches and others with quad patches.
Unfortunately, both Catmull-Clark and Loop surfaces re-

quire that all patches be quadrilateral or triangular, respec-
tively. In theory this is not a problem, since any triangle
can be converted into three quads and any quad can be tes-
selated. However, as illustrated in Figure 1, Catmull-Clark
surfaces behave very poorly on triangle-only base meshes:
the resulting surface exhibits annoying undulating artifacts.
Similarly, Loop schemes do not perform well on quad-only
meshes. More importantly, designers often want to preserve
quad patches on regular areas of the surface where there are
two “natural” directions. Consequently it is often desirable
to have surfaces that have a hybrid quad/triangle patch struc-
ture.

To the best of our knowledge only one previous hybrid
quad/triangle subdivision scheme has been proposed in the
literature 6. This scheme reproduces Catmull-Clark on the
quad region but does not reproduce Loop on the triangular
part. The triangular scheme on the regular part of the mesh
is actually non-polynomial and is not even curvature contin-
uous. Our scheme on the other hand reproduces Loop sur-
faces on the triangular part of the mesh. Also, no analysis of
the limit surface was provided in 6. Our hybrid subdivision
algorithm is surprisingly simple and is based on the fact that
both Loop and Catmull-Clark surfaces can be generated by a
linear subdivision step followed by vertex-smoothing 9. This
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Figure 1: A regular triangular mesh (left) behaves poorly
with Catmull-Clark (middle) and behaves nicely with Loop.

Figure 2: Our subdivision scheme comprises two steps. A
base mesh (left) is first linearly subdivided (middle) and then
followed by an averaging of the vertices (right).

algorithm is related to the “repeated averaging” schemes of
Zorin and Schröder 11 and Warren and Weimer 10 in that two
averaging steps are taken at once.

2. Quad/Triangle Subdivision

2.1. The Generalization

Our new surfaces are modeled by a base mesh that is formed
of quads and triangles only. We assume that polygons of the
base mesh other than quads and triangles are quadrangulated
by placing a vertex at the centroid of the polygon; as in step
one of the Catmull-Clark algorithm. Optionally, these faces
could be triangulated. Figure 2 (left) shows a typical base
mesh. Our subdivision rules comprise two steps. In the first
step we evenly split each edge into two, each quad into four
and each triangle into three, as shown in Figure 2 (middle).
Then in a second step we replace each vertex with a lin-
ear combination of itself and its direct neighbors resulting
in the mesh shown in Figure 2 (right). When a vertex is en-
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Figure 3: Averaging masks for regular quads (left), regular
triangles (middle) and regular quad-triangles (right).
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Figure 4: Smoothing masks for Loop, Catmull-Clark
and our new scheme. The weights are a � 2

�
3 � 8 �

1 � 4cos
�
2π � ne � � 2 � 1 � 4, b � �

1 � a � � ne, c � �
ne

� 3 � � ne,
d � 2 � n2

e and e � 1 � n2
e . In our example ne

� 8 and nq
� 3.

tirely surrounded by triangles or quads we use the first two
masks shown in Figure 4, otherwise when the mask is sur-
rounded by both triangles and quads we introduce the new
third mask. We first consider the regular case when a ver-
tex is surrounded by two adjacent quads and three adjacent
triangles. In this case the obvious choice is the mask shown
in Figure 3 (right), which is a simple average of the regular
quad and triangle masks also shown in Figure 3. To derive a
general mask at an irregular vertex we introduce some nota-
tions: let ne be the number of edges emanating from the ver-
tex and let nq be the number of quads surrounding the vertex.
As shown in Figure 4, we denote by α the weights associ-
ated with the irregular vertex and let β and γ be the weights
associated with the neighboring edge and face vertices, re-
spectively. A natural generalization of the regular case is to
let the weights be equal to

β � α
2

and γ � α
4 �

The value of α is then determined from the condition that
the rules should be affine invariant:

α � ne
α
2

� nq
α
4

� 1 �
This equation is readily solved for α:

α � 1

1 � ne
2 � nq

4 � (1)

The choice for our mask is quite arbitrary as there are po-
tentially many other affine invariant generalizations. Ideally
we want a mask which gives the most aesthetically pleasing
surfaces. One way to formalize this requirement is to make
the curvature well behaved at each vertex. In fact, for ne � 5
our masks are far from optimal. Before we discuss the mod-
ification to our masks we have to recall some well known
results from the theory of subdivision surfaces.

2.2. Eigen-Analysis of Subdivision

Of crucial importance in the theory of subdivision surfaces is
the subdivision matrix S. To every vertex of the control mesh
we associate a one-ring of neighboring vertices as depicted
in Figure 4. The subdivision matrix specifies how this set
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Figure 5: Surface generated using our new subdivision
scheme: without vertex correction (top) after vertex correc-
tion (bottom).

of vertices is transformed into a similar set of vertices after
one iteration of the subdivision rules. This matrix is of size
K � K, where K � 1 � ne � nq. As first pointed out in 3 the
eigenstructure of this matrix is important in the analysis of
the limit behavior of the surface at the central vertex. Due to
the property of affine invariance, the matrix S always has a
maximum eigenvalue equal to one. The next five eigenvalues
in order of magnitude:

1 � λ � λ2 � µ � µ2 � µ3 ��� � �
are important in characterizing the behavior of the tangent
plane and the behavior of the curvature at the central ver-
tex. In particular, the two left eigenvectors corresponding to
λ and λ2 can be used to compute the normal (if it exists)
of the limit surface at the central vertex. When the surface
curvature is continuous, µ � λ2. Consequently, to measure
the quality of the curvature we propose the following ra-
tio ρ � µ � λ2. Ideally, this ratio should be equal to 1. When
ρ � 1 the curvature is zero and the surface has a flat spot,
which is undesirable. On the other hand, when ρ � 1 the
curvature diverges which results in surfaces which appear to
be “pinched” at the central vertex.

2.3. Vertex Correction

Refer to Figure 5 (top) depicting three surfaces created with
our generalized masks. Clearly the corners of these surfaces
appear to be overly pinched. Somehow we want the limit
surface at the corners to be drawn more inward. One simple
technique to achieve this is to follow the averaging step with
a correction step. This idea was first introduced (implicitly)
by Catmull and Clark to improve the behavior of the surface
at a vertex where three quads meet: a corner. This fact was
first pointed out in 6. The idea behind our correction step is to
translate the smoothed vertex along the direction defined by

ne nq η ρ

2 1 -0.20505 1.000
3 1 0.80597 1.227
3 2 0.61539 1.242
4 1 0.34792 1.000
4 2 0.21380 1.000
4 3 0.10550 1.000

Table 1: Values of the correction factor η for different con-
figurations. Also given is the corresponding value of the ra-
tio ρ.

the difference between its current position v1 and its previous
position v0 by an amount η:

v2
� v1 � η

�
v1

� v0 � �
To make the corners more rounded we let η � 0, so that the
vertex is drawn more inward. We numerically determine the
optimal value of η which makes the ratio ρ � 1. These val-
ues are reported in Table 1. When ne

� 3 the optimal value
ρ � 1 cannot be achieved because larger values of η result
in a subdivision matrix having a negative eigenvalue, which
results in undesirable oscillations. When this happens we
compute the value of η which sets the smallest eigenvalue
exactly to zero. Figure 5 (bottom) shows the effect of the
correction step. Notice how the pinched behavior has almost
completely disappeared and the surfaces have a rounder ap-
pearance.

When ne � 5 we did not notice any improvement in the ra-
tio ρ when varying the correction factor η. Nor did we notice
any differences in the appearance of the resulting surfaces.
Therefore we simply ignore the vertex correction step when
ne � 5. It is possible to improve on the behavior of the cur-
vature in these regions by modifying the original mask given
by Equation 1. We did not explore this line of enquiry fur-
ther as the surfaces we experimented with had no apparently
bad artifacts in those regions.

2.4. Creases, Boundaries and Hierarchy

Creases and boundaries are easily incorporated in our
scheme following 9. Smoothing along boundaries and
creases is achieved using the � 14 1

2
1
4 � cubic B-spline aver-

aging mask along the boundary/crease. Alternatively, more
clever rules could be devised to handle pathological bound-
ary cases as shown in 1. On the quad and triangle regions
of the mesh we can use any of the well known hierarchical
schemes.

3. Smoothness

3.1. C1-Continuity

Our surfaces are naturally curvature continuous on both the
regular quad and the triangle regions of the mesh since each
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Figure 6: Control nets defining the characteristic map for
different values of ne and nq.

agree exactly with regular bi-cubic B-splines and triangular
Box splines of total degree four, respectively. At the irregular
quad and triangle regions the surface is C1 but not curvature
continuous. We refer the reader to the literature for a proof
of this fact 7 � 12. The crucial tool used in these proofs is the
characteristic map first introduced by Reif 7. This map is
the surface defined by the two-dimensional mesh formed by
the two eigenvectors corresponding to λ and λ2 (see Sec-
tion 2.2) of the larger subdivision matrix S � , which includes
two rings of neighboring vertices. Figure 6 shows the afore-
mentioned meshes for various configurations of quads and
triangles around a central vertex. A fundamental theorem of
subdivision surfaces states that when the characteristic map
is both regular and injective, the surface is C1 at the central
vertex. In Figure 6 we depict several control meshes for char-
acteristic maps corresponding to different values of ne and
nq. It seems reasonable to infer that the corresponding sur-
faces are injective. In fact we can verify injectivity for these
meshes up to machine precision. This argument does not
constitute a formal proof of C1 for all possible cases. How-
ever in practice what matters most is that we can compute a
limit normal from the left two eigenvectors corresponding to
λ and λ2

4.

3.2. Non-C2-Continuity

We now show that our surfaces cannot be C2 along the reg-
ular quad/triangle boundary. In order for the surface to be
C2 it must be able to reproduce the three quadratics x2, xy
and y2 at any patch along the boundary. After one subdivi-
sion step, one half of the patches at the boundary are ex-
act polynomials (shown in grey at the top of Figure 7). On
these patches we can exactly represent any of the quadratics
in terms of the Box spline basis functions. This completely
constrains the values of the control vertices on both sides
of the quad/triangle boundary. The values of these vertices
are readily computed and are given on the bottom of Figure
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Figure 7: Coefficients of the Box splines corresponding to
the shaded area (top) that reproduce the three quadratics:
x2, xy and y2 (bottom).
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Figure 8: Limit masks for position (left) and normal (mid-
dle/right) for a regular quad/triangle vertex.

7. For the surface to be C2 these coefficients have to agree
at the quad/triangle boundary. Unfortunately this is not the
case for the coefficients of y2 and consequently the surface
cannot possibly be C2. Note that our proof carries through
even if we use a different configuration than the one shown
in Figure 7. Other configurations change the coefficients we
present. These may change the quadratics spanned, but no
choice captures all three.

However, for the rules we have chosen, the surface at the
quad/triangle boundary has bounded curvature since it has
the following regular set of eigenvalues:

1 �
1
2

�
1
2

�
1
4

�
1
4

�
1
4

�
1
8

�
3

32
�

such that µ � λ2.

4. Implementation

We have implemented our scheme as a MAYA shape plu-
gin node. Our plugin takes as an input any MAYA-modeled
polygonal mesh comprised of triangles and quads and dis-
plays a shaded polygonal mesh using the limit positions and
normals of the vertices at a given level of subdivision. To
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Figure 9: Comparison of Loop (left), Catmull-Clark (mid-
dle) and our new scheme (right).

compute limit positions and limit normals we use the left
eigenvectors of the corresponding subdivision matrix (see
Section 2.2). In the interior of the faces these limit masks are
regular and well known. At irregular quad and triangle ver-
tices we use the masks given in 4 and 5. At the vertices that
share triangles and quads we compute these eigenvectors nu-
merically only once when reading in the base mesh. Figure 8
provides the limit masks for the regular quad/triangle bound-
ary vertices.

Figure 9 demonstrates that our new scheme performs bet-
ter than Loop and Catmull-Clark on a cylinder-like polygo-
nal model. Figure 10 depicts different surfaces created using
our new subdivision scheme. Note that the right-most pic-
tures show a reflection-line plot of the surface, which pro-
vides an excellent visualization of the curvature.

5. Conclusions and Future Work

In this paper we have proposed a novel hybrid quad/triangle
scheme which unifies Catmull-Clark and Loop surfaces in a
single framework. We obtained our subdivision rules by de-
composing the subdivision process into separate steps: linear
subdivision followed by vertex-averaging followed by a ver-
tex correction. We have shown that our surfaces are tangent
plane continuous but not curvature continuous. However, we
have introduced masks which optimize the behavior of the
curvature. In general, for hybrid quad/triangle meshes our
new scheme produces nicer surfaces than previous schemes.

In the future we intend to find an exact evaluation proce-
dure for our surfaces similar to 8. The evaluation depends on
the ability to evaluate exactly along the regular quad/triangle
boundary. Once this is established evaluation everywhere
follows directly. We are also searching for a formal proof
of the fact that our surfaces are C1, perhaps by recasting the
problem into the known quad or triangle framework or by
inventing a new method of proof.

Finally, even though our schemes work well on hybrid
quad/triangle meshes, they still perform poorly when the

base mesh contains faces with a very bad aspect ratio. This
is a more general problem that plagues uniform stationary
subdivision. A topic for future research could be to come up
with new rules which can handle any type of base mesh and
still produce aesthetically pleasing looking shapes.
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Figure 10: Different surfaces generated using our new
scheme.
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