Quad/Triangle Subdivision

Jos Stam
Alias|wavefront

with Charles Loop (Microsoft)

Polygonal Modeling

Quads vs Triangles

Problems

Triangles bad for Catmull-Clark

Problems

Loop: quad structure lost

Solution

Keep quads and triangles

Solution

Keep quads and triangles

Algorithm

Use split and average

Known Masks

Catmull-Clark

Loop

Regular Quad/Triangle

Irregular Quad/Triangle

$$\alpha + N_e \alpha/2 + N_q \alpha/4 = 1$$

Some Examples

Surfaces "pinched" at corners

Vertex Correction

First used by Catmull-Clark

Vertex Correction

$$v^2 = v^1 + g(v^1 - v^0)$$

What is the optimal factor? (CC: g = (4-N)/N)

Eigen-structure

$$x^1 = S x^0$$

Eigen-values

$$1 > \lambda \geqslant \lambda_2 > \mu \geqslant \lambda_4 \geqslant \lambda_5 > \dots$$

Bounded curvature: $\mu = \lambda^2$

Define ratio: $\rho = \mu/\lambda^2$

We want: $\rho = 1$

Back to Vertex Correction

g	0.80597	0.61539	0.34792	0.21380	0.10550
ρ	1.227	1.242	1.000	1.000	1.000

Smoothness

C² everywhere except at:

Quad/triangle boundary

Extraordinary vertices

Regular Case

Regular Case not C²

 x^2

Xy

 y^2

Eigen-values: 1, ½, ½, ¼, ¼, ¼, ¼, ...

Irregular Case

Examples

MAYA shape plugin

Future Work

Exact Evaluation

Formal C¹ proof

Better rules for "bad" meshes