
Nucleus: Towards a Unified Dynamics Solver for Computer Graphics

Jos Stam
Autodesk, Inc.

Jos.Stam@autodesk.com

Abstract

This paper presents a unified dynamics solver

developed by the author which was first released in
Autodesk™ MAYA 8.5. The solver however is a
standalone library which could potentially be used in
other applications. Current dynamics solvers are
usually fine tuned for specific effects such as rigid
bodies or cloth. Handling the interaction between these
solvers is often problematic as one of them takes
precedence over the others. In our Nucleus solver we
model all matter as a simplicial complex: a
generalization of a triangle mesh that also includes
points, curves and solids. This allows interactions such
as collisions between various elements of different
dimensionality. The internal deformations such as
stretch and bend are handled through constraints
instead of springs. This makes the simulation more
stable for stiff materials such as cloth. Through mutual
interactions and constraints many interesting
phenomena emerge automatically. The basic
philosophy behind Nucleus is that complexity arises by
combining simple constraints.

1. Introduction

The convincing simulation of interacting

deformable objects is hard to achieve using traditional
animation techniques such as key-framing alone.
Therefore there is a need in computer graphics to rely
on physics-based dynamics solvers. Instead of
specifying exact poses through key frames an animator
specifies material properties of the object’s and
external forces. Given this information the dynamics
solver then ideally computes snapshots of the states of
all the objects over fixed time-steps. Most current
solvers are fine tuned for a specific effect such as rigid
bodies and cloth. Resolving interactions between such
solvers can become problematic. For example, imagine
a rigid body like a soccer ball being kicked in a goal.
There will be a two way interaction between the ball
and the net. Achieving this effect by connecting a rigid
body solver to a curve-based solver for the goal net can

be problematic. In this paper we present a solver that
tries to resolve these interactions simultaneously.

We describe both how we model different shapes of
matter and how we simulate them. We decided to use a
simplicial complex as our shape model as it includes
points, curves, surfaces and solids in a unified
framework. For the simulation part we use a space-
time based approach for the collisions and a constraint
based approach to account for deformations. This
approach results in simulations that are relatively stable
for stiff materials such as cloth.

By allowing various elements of matter to interact
in this manner we get interesting emergent behaviors.
Even though each interaction is simple more complex
behaviors emerge. For example a flapping flag can be
simulated using a simple directional wind field and an
inextensible piece of cloth. The flapping behavior
emerges from the drag and lift constraints battling the
stretch constraint. The behavior emerges without the
need for a complicated air flow model. Throughout our
research we emphasize simplicity as it vastly reduces
the amount of code and consequently the amount of
potential bugs. This is not just an aesthetic bias on our
part rooted in a desire to achieve mathematical
elegance. In practice adhering to this principle results
in more robust and stable commercial products.

2. Previous and Related Work and the

History of Nucleus

Simulations based on physics are evidently not

novel in computer graphics. This approach was
pioneered in the late eighties by many researchers [18].
Early work focused mainly on spring-based models for
deformable matter and used either explicit or implicit
methods. In addition many works have focused on
simulating rigid bodies [5,13,17]. As far as we know
the first paper to handle deformations as constraints
was Provot’s strain limiting procedure used for cloth
[16], see also [9] and the pioneering work of Moreau
[14]. Since then others have used this approach [12,15]
to good use. Recently this approach seems to gain
acceptance in academia as well [10].

 The system closest in spirit to ours is the position
based dynamics work of Müller et al. [15] developed
independently from us and the collision work by
Bridson et al. [6]. We do not cover here in detail the
vast literature on this subject but only cite work that
directly inspired us or is closely related. We refer the
reader instead to one of the many surveys on this topic
and the references in the papers cited. The goal of this
paper is to give an overview of the ideas and
techniques that were implemented in the Nucleus
library.

Research on the Nucleus solver started as a small
project by the author of this paper in the fall of 2000 in
Seattle to create a very simple cloth solver for a cool
live demo of smoke interacting with cloth. The idea
was to replace springs with hard links. Since cloth is
not stretchy it seemed like a bad idea to use very stiff
springs to model it. So instead we started with hard
links treated like constraints. Stiff springs have several
problems. Explicit integrators require small time steps
to achieve stability which result in long simulation
times. On the other hand stable implicit time
integration schemes damp out off spring motion which
results in overly damped animations. We will make
these points more concrete in a simple setting below.

The system we implemented initially was so simple
that we wrote a version for the Palm just for fun back
in 2001 for a very small 8x8 piece of cloth, followed
by an implementation on the PocketPC with variable
resolution. Both demos were “beamed” around at that
time. We also showed a demo of cloth interacting with
smoke in the “Visual Simulation of Smoke” paper
presentation at SIGGRAPH in Los Angeles in 2001.

 But it wasn’t until the author of this paper showed
the demos at the SIGGRAPH 2003 annual
Alias|wavefront’s user’s group in San Diego that some
buzz was generated amongst our user base.
Subsequently we were asked by upper management at
Alias|wavefront to replace the existing cloth solver in
MAYA with our new one.

This task was quite a challenge since the existing
cloth solver in MAYA was pretty sophisticated. Soon
after we got seriously involved in this project we
realized that our framework could accommodate other
elements than cloth. That happened somewhere in the
summer of 2004 and that was when the concept of a
Nucleus solver really took off. After that we wrote
many prototypes and the final version of the solver was
written in the (hot) fall and (early) winter of 2005 in
Toronto, Canada. It was then further refined and
integrated into MAYA during 2006.

We made sure to build an API around our solver
such that any changes at a low level would not affect
function calls on the MAYA side. Our Nucleus solver
is tiny compared to the MAYA source code: about a

meager 100 files versus the 40,000 or so files
populating the MAYA code base.

The capabilities of the new solver were first
demonstrated at Autodesk’s user’s group at
SIGGRAPH 2006 by Duncan Brinsmead in Boston in
July and later in a key note talk by the author at
EUROGRAPHICS 2006 in September in Vienna. The
solver was first released in early 2007 in Autodesk™
MAYA 8.5 Unlimited with the release of nCloth. This
release only exposed the cloth capabilities. In 2008 we
released an nParticle feature allowing the interaction
between particles and nCloth objects. We are hoping to
add many more features in the future and enhance the
Nucleus solver.

3. Shape Model: Simplicial Complexes

Since we are interested in modeling a whole range

of shapes in a unified manner we decided to use the
theory of simplicial complexes. It is a well known fact
that any surface can be approximated by a triangular
mesh to any arbitrary precision. A generalization of
this result is a theorem first proved by Brouwer in 1910
which loosely states that “Every continuous mapping
can be approximated by a piece-wise linear simplicial
ma precisely in math-speak: p.” Or more

ܐ܂ ܚܗ܍ܕ܍ :
Let ܭ and e comple e ite. ܮ b xe

ap ݄
there is an ܰ su h h s a simplicial

s; l t ܭ be fin
Given a contin ׷ |ܭ| ՜ uous m |ܮ|

c that ݄
approximation ݂ ׷ sdே : K → L.

a
For our purposes it is sufficient to define a

simplicial complex as an assemblage of simplices. A
simplex is a generalization of a triangle to any
dimension. Figure 1 shows four different k-simplices
that model points, edges, triangles and tetrahedra.
More complicated shapes are modeled by gluing these
building blocks together. The blocks do not need to
have the same dimension as shown in Figure 2. The
definition of a simplicial complex is purely topological
as it establishes a relationship between elements of an
arbitrary set. The latter can be points in space, masses,
colors, etc. We therefore neatly separate the topology
from the geometry. In practice our implementation of
the simplicial complex code contains only ints and no
floats for example.

Figure 1: four k-simplices.

Figure 2: Two examples of a simplicial complex.

The neat aspect of using a unified model for the
shapes is that it leads to a very elegant implementation
using only a single data structure:

class simplex {
 int k;
 int sign;
 int vertex[k+1];
 int child[k+1];
 int n_parents;
 int parent[n_parents];
};

For each simplex we store its dimension k. We also

store the k+1 indices of the elements and the k+1 (k-1)-
simplices that it contains. For example a 2-simplex
(triangle) contains 3 1-simplices (edges). A simplex
can have an arbitrary number of parents. For example,
a point (0-simplex) in a mesh can have an arbitrary
number of incident edges (1-simplices). In this case the
number of parents of the point is commonly called its
valence. We also store a sign for each simplex for the
following reason. For many operations it helps if the
indices of the elements are stored in lexicographical
order. However, this rearrangement of the indices can
change the orientation of the simplex. When the
number of transpositions is odd the sign is -1 otherwise
it is 1. A zero sign value indicates that the element
does not have an orientation. The sign also allows
many algebraic operations to be simplified on
simplices.

In this paper we will not get into all the details of
implementing operations on simplical complexes.
However, the above data structure allows us to
implement many queries effortlessly that are needed to
set up the constraints described below.

We encourage the reader who is interested in
learning more about this topic to consult the excellent
introduction to this topic by Alexandrov [1]. Also we
recommend his more detailed monograph which has
proven to be very helpful [2]. Both books are also very
affordable because they have been cheaply reprinted by
Dover publication.

4. Dynamics

4.1. Basic Equations

The dynamics of a simplicial complex is defined by

the motion of its N vertices. We can compact this
description in a 3N vector: ܠሺݐሻ ൌ ൫ݔଵሺݐሻ, … , .ሻ൯ݐேሺݔ

The particles evolve due to external forces and

internal deformations defined by the simplices and
other factors as explained below. The laws that govern
the motion of the particles are well known since
Newton stated them in his famous Principia in 1687.
In particular his second law states that (assuming unit
masses):

ሷܠ ሺݐሻ ׏ ൅ ௘ ൌ܎ െ ݂ሺܠሻܠሺ0ሻ ൌ ሶܠ଴ܠ ሺ0ሻ ൌ ଴ܞ

where ݂ሺݔሻ is the internal energy due to deformations
and ܎௘ model external forces like gravity. The initial
state is defined by the initial positions and velocities of
the particles. An alternative way to specify the
dynamics is to require that the particles minimize the
total energy at each instant of time:

ܧ ൌ 12 ሶ|ܠ| ଶ ൅ ݂ሺܠሻ ൅ ܎௘ · ܠ

The first term is the total kinetic energy, the second

term is the potential energy and the last term is the
work done by the external forces. A very good
introduction from a mathematical point of view is the
monograph by Arnold [3]. These equations have been
around for over 300 years and one would expect that
there is a standard numerical procedure to solve them.
However, this is not the case and to understand the
difficulties we turn to a simple problem in more detail.

4.2. On the Motion of a Simple Spring

It is interesting that even the problem of solving the

dynamics of a simple linear spring exhibits the
behavior and difficulties common to more
sophisticated solvers. This section is not a thorough
overview of numerical integrators. For a good review
see the excellent book by the group from my alma
mater at l’Université de Genève [11]. The intent here is
to focus on one of the simplest problems and
understand the basic numerical problems one can
encounter.

The equations for are a linear spring
ሷሺݔ ሻ ൌ െݔሺݐሻ ݔሺ0ሻ ൌ ሺ0ሻݒ ଴ݔ ൌ ሶሺ0ሻݔ ൌ .଴ݒ

ݐ

To visualize the motion of the spring we can draw

its trajectory in the phase space ሺݔ, ሻ, a plane in thisݒ
case. From the nserva on of e ergy: co ti n

ܧ ൌ ଶݒ 12 ൅ 12 ݔଶ ൌ ଴ଶݒ 12 ൅ 12 ݔ଴ଶ

we know that the trajectories are circles in the phase
plane whose radius is a function of the initial state as
shown in Figure 3. The equation can also be computed
analytically in this case. There is an elegant way to
obtain this result by introducing the complex number ݖ ൌ ݔ ൅ In this manner the equation for the motion .ݒ݅
of the spring reduces to an ordinary differential
equation:

ሶሺݖ ሻݐ ሻݐ ൌ െ݅ݖሺሺ ݖ ݖ 0ሻ ൌ ଴
Whose solution is ݖሺݐሻ ൌ ଴݁ି௜௧. This proves that theݖ
motion proceeds clock-wise along the trajectories. The
equation in the complex domain also shows that the
trajectories are tangent to the vector field as shown in
Figure 4.

Figure 3: Trajectories of the spring in phase space.

Figure 4: Trajectory of the spring is tangent to the

vector field.

We now analyze three methods to solve this

equation numerically with a fixed time step ݄. The
time derivative between two consecutive states is
approximated by:

ሻݐሶሺݖ ൎ ଵݖ െ ଴݄ݖ .

In an explicit scheme the right hand side of the

equation is evalu te a rr nt state, so that a d t the cu eݖଵ ൌ ሺ1 ൅ ݄ሻଶ݁ି௜௛ݖ଴.

In an implicit scheme on the other hand the right

hand side of the equation is evaluated at the next state
which results in he o atet f llowing upd ଵݖ ൌ ሺ1 ൅ ݄ሻିଶ݁ି௜௛ݖ଴.

We see that in an explicit scheme the motion of the

spring is an outward spiral. This means that it gains
energy over time and is thus inherently unstable. This
is undesirable in general. The implicit scheme on the
other hand is unconditionally stable by dissipating
energy and the motion is that of an inward spiral. The
problem with implicit methods is that there is no direct
control over the amount of dissipation which depends
on the time step. Figure 5 depicts this situation.

Figure 5: Trajectory of the spring in phase space using

explicit integration (left) and implicit integration (right).

displacement

Figure 6: Symplectic trajectories for h=sqrt(2), 1 and

0.5.

A natural alternative is to combine the two schemes
hoping that the dissipation of the implicit scheme
counteracts the energy gain of the explicit one. In fact
such schemes are called symplectic. The basic idea is
to go implicit on the velocity and explicit on the
position. We have not found an elegant way to derive
the scheme using complex numbers. In velocity-
position space xt state is: the equation for the neቀݒଵݔଵቁ ൌ ቀ1 െ݄݄ 1 െ ݄ଶቁ ቀݒ଴ݔ଴ቁ

The trajectories are now closed curves or curves

that are bounded in phase space. Figure 6 shows
several examples for different time steps. Interestingly
for ݄ ൌ 1 we obtain a hexagon and for ݄ ൌ √2 we get
a quadrilateral. For some cases such as ݄ ൌ ଵଶ the
trajectory fills up a space bounded by two ellipses.
Motivated by pure intellectual curiosity we have
computed the time step that will produce any given n-
gon. We achieved this by computing the eigenvectors
of the matrix in the symplectic equation:

 1 െ 2݄ േ ݄݅ ඥ4 െ ݄ଶ/2

We will not provide the details here. Note that from

the eigenvalues we deduce that the method is unstable
for time steps that are larger than 2 in this case.

The name of the integrator comes from the fact that
the mapping preserves area, which is clearly the case
for the above matrix since its determinant is equal to
one. But why is it called “symplectic”? What does that
word mean? An English dictionary defines it as:
“Plaiting or joining together; - said of a bone next
above the quadrate in the mandibular suspensorium of
many fishes, which unites together the other bones of
the suspensorium.” Why name a mathematical property
method after a fishbone? This is clarified in [11], the
name was coined for other reasons by the famous
physicist and mathematician Hermann Weyl. He had to
name the property of a group he was working on and
wanted to name it “complex.” However that name was
already taken to refer to an extension of the real
numbers. So he replaced the Latin root “com” to its

equivalent Greek root “sym” to concoct the word
“symplectic.”

Figure 7: Three types of constraints: stretch, shear

and bend.

5. Deformations as Constraints

The moral of the spring example is that it is a good

idea to go implicit on the velocities and explicit on the
positions once the velocities are computed. However,
this procedure is still unstable for the case of springs.
Therefore, instead of using springs we use hard
constraints which can be softened if a bouncy behavior
is desired. These hard links correspond to a resistance
to stretch within a body. This is a relationship between
two points of the simplicial complex, usually
corresponding to its edges (1-simplices). We call this a
type 1 constraint. Similarly we can define a type 2
“shear” constraint for each pair of 1-simplices by
constraining the angle between them and we define a
type 3 “bend” constraint between an edge connecting
two 2-simplices. These three types of constraints are
shown in Figure 7.

With these three constraints we are able to model
the deformations of simplicial complexes of any
dimension as shown in Figure 8. The number next to
each simplex is the ratio: # constraints# ݇ െ simplices

 The type of constraint has different interpretations

depending on the k-simplices involved. For example, a
type 2 constraint is a bending constraint for 1-simplices
but a shear constraint for 2-simplices. Similarly a type
3 constraint is a twist constraint for 1-simplices and a
bend constraint for 2-simplices. It is neat that we can
model a wide range of effects using only three types of
constraints.

We now provide exact mathematical expressions for
these thr typ fee es o constraints:

ሻܠଵ,ሺ௜,௝ሻሺܥ ൌ หݔ௝ െ ௜หݔ െ ݈௜௝
ሻܠଶ,ሺ௜,௝,௞ሻሺܥ ൌ cosିଵ൫݀௜௝ · ݀௜௞൯ െ ௜௝௞ߛ
ሻܠଷ,ሺ௜,௝,௞,௟ሻሺܥ ൌ cosିଵ൫݊௜௝௞ · ௝݊௜௟൯ െ ,௜௝௞௟ߠ

where ݀ ൌ ௝௜௝ݔ െ ௝ݔ|௜ݔ െ |௜ݔ a d݊௜௝௞ ൌ ݀௜௝ ൈ ݀௜௞ห݀௜௝ ൈ ݀௜௞ห
n .

For a given simplicial complex there will be many

such constraints which have to be satisfied at the same
time.

Figure 8: Three types of constraints for 1, 2 and 3-

simplices.

Besides the three deformation constraints Nucleus
also includes the following types of constraints (the list
is growing and is not complete):

• Air model using drag and lift and a wind

direction.
• Air pressure model for closed and non-closed

meshes.
• Rigid Body constraint.
• Collisions (see Section 7)
• Point to surface constraint.
• Incompressible constraint for particles.

We can group all o straints in a vector of

size m:
f these con۱ሺܠሻ ൌ 0.

This gives rise to a single non-linear system of

equations for the change in velocity ∆۱ :ܞሺܠ ൅ ܞ݄ ൅ ሻܞ∆݄ ൌ 0.

Once the velocity change has been computed we

can update the positio cit manner: ns in an expli
ܞ ൌ ܞ ൅ ܠ .ܞ∆ ൌ ܠ ൅ .ܞ݄

The big challenge is how to solve this highly
nonlinear constraint equation. An idea we tried and
was pursued independently in [10] is to linearize the
equation as follows: ۱ሺܠ ൅ ܞ݄ ܞ∆ሻ݄ܞ ൌ 0. ሻ ൅ ܠ۱ሺ׏ ൅ ݄

This results in a 3ܰ rix equation:
 ൈ ݉ matݑܣ ൌ ܾ.

The matrix is in general not square so a solution has

to be found in the least squares sense. One such
ique is to solve: techn

ݒ்ܣܣ ൌ ܾ

first and then to set
ݑ ൌ .ݒ்ܣ

Alternatively one can use methods like LSQR or

CGLS which require a black box routine that compute
both the matrix multiply and its transpose. This
technique works well as long as the constraints are
close to linear which is true for small time steps. When
the linear approximation is poor this procedure can
actually make things worse by returning a solution that
is far from the non-linear one resulting in instabilities.

Because of these problems we decided to solve the
constraints in a sequential manner one at a time in a
Gauss-Seidel manner [14]. For each constraint we do a
line search a constraint: long a direction d to satisfy the ݂ሺߙሻ ൌ ܿ௞ሺܠ ൅ ܞ݄ ൅ ሻ܌ߙ ൌ 0.

The search direction is chosen to be the gradient of

the constraint. In practice this gradient can be quite
tedious to compute analytically. There are two
alternatives: one is to use automatic differentiation and
the other one is to consider the direction orthogonal to
all transformations that modify the constraint as
proposed by Bridson et al. [6]. Once a direction has
been chosen we can solve the above equation for the
constraint using Newton itera starting with: tions

ߙ ൌ െ ݂ሺ0ሻ݂݀ሺ0ሻ݀ߙ
 .

In fact we take only one Newton iteration per

constraint since we have to satisfy many constraints
simultaneously. Trying to satisfy one constraint
accurately is pointless since other constraints might be

1-simplex 2-simplex 3-simplex

1 3

1/2

1/3

3

1/2

12

6

6

conflicted with it. In the next section we describe a
way to deal with this problem.

6. Unified Solver: Resolving the Battle of

the Constraints

To each type of constraint we assign an importance I and an order O. The importance lets Nucleus know

how many times the constraint will try to solve itself.
The order determines the sequence in which the
constraints are being called. In Figure 9 we show an
example of such a sequence. The evaluation is from
top to bottom one row at a time.

Figure 9: Order of evaluation and importance of

several constraints.

The order of evaluation is important. We illustrate
this with the example of an elastic band under tension
between two bars as shown in Figure 10. If stretch is
evaluated after the collisions then we get the results on
the left. While if we evaluate collisions after stretch we
get the situation depicted on the right. In general the
latter is more desirable. However, notice how the band
is overly stretched at the extremities near the bars. This
is because we first attempt to solve for stretch which
will shrink the entire band and then we resolve the
collisions for the extremities. This is clearly not
desirable.

Figure 10: collisions followed by stretch (left), stretch

followed by collisions (right).

To resolve this problem we interleave the constraint
evaluations as shown in Figure 11. The solver
computes from each constraint’s importance the
interleaving pattern and it also makes sure that all
constraints are called in the final step. The math to do
this is pretty straightforward and we will skip it in this
paper. In Figure 11 the evaluation is done one column

at a time from top to bottom as indicated by the arrow.
In Figure 12 we show that this minimizes the order
bias in the case of the rubber band under tension. There
is no excessive stretching anymore at the extremities of
the rubber band.

Figure 11: Interleaved evaluation of the constrained

over one time step.

Figure 12: non-interleaved (left) versus interleaved

(right).

Figure 13: Custom constraints can be included in the

Nucleus framework.

We have designed the solver such that users of the
Nucleus library can potentially add their own
constraints in the framework. The core of the Nucleus
solver is blind to the internals of each constraint.
Nucleus only knows about the importance and order of
each constraint. For example, assume a user of the
library wants to insert some code after each self-
intersection call. In that case it can notify the Nucleus
solver of the new constraint through an API and give it
an order higher than self-intersection and same
importance as shown in Figure 13. In the next Section
we describe how we handle collisions in Nucleus. This
is a very important component of the solver.

Bend (9)

Shear (7)

Stretch (26)

Self-Collisions (7)

Collisions (6)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Bend (9)

Shear (7)

Stretch (26)

Self-Collisions (7)

Collisions (6)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Bend

Shear

Stretch

Self-Collisions

Custom

Collisions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 14: Penalty methods (left) versus space time

collisions (right).

7. Collisions

We decided to present the collision handling after

the general solver since it is quite involved and we
didn’t want to break the flow of the narrative of the
basic methodology. Collisions differ from the other
constraints as they are unilateral, which means that
they are expressed as an uality constraint: ineq۱ሺܠሻ ൒ 0.

For example the constraint could be a function of

the amount of overlap between two bodies at the end of
the time step. However, in the case of fast moving
objects it might happen that they do not overlap at the
end of a time step. In practice if we do not want to
restrict the size of the time step we have to take into
account the entire space-time motion and detect
collisions that might occur in between the frames.
Figure 14 illustrates the difference: a fast moving
bullet might be in a valid state at the end of the frame
even though it collided with an object in between. Also
for objects that are not closed: ones that do not
unambiguously define whether a point is inside or
outside, this approach does not work. Therefore we
adopt a space-time approach in the Nucleus solver.

We will first explain collisions in a one-dimensional
setting since we can conveniently depict the space-time
picture in a plane. In fact solving the problem in one
dimension is conceptually as hard as the three-
dimensional case. The difference is just in the details
of the computations involved.

In one dimension the particles are restricted to lie
on a line. Consider the situation depicted in Figure 15,
where two particles are approaching each other. Let the
positions of the particles be denoted by a0 and b0
before the collision and by a1 and b1 at the end of the
frame. Then a condition for the particles to have
collided in between t that: he time step is

଴ܸ ൈ ଵܸ ൏ 0,

where

௜ܸ ൌ ܾ௜ െ ܽ௜ ݅ ൌ 0,1.

In fact the time of collision can easily be computed

in this case from these quantities as follows:
ݐ ൌ ଴ܸ଴ܸ െ ଵܸ.

Once we have the time of collision we can resolve it

as shown in Figure 16 either in an elastic manner (left)
or in a completely inelastic manner (right) or some
blend in between these two extremes. That is how we
solve the one-dimensional problem

Figure 15: Space-time diagram of a one-dimensional

collision.

In a two-dimensional plane two simplicial
complexes collide through edge-point collisions only.
Analogous to the one-dimensional case we compute
the signed area of the triangle formed by the edge and
the point at the start and at the end of the frame. If the
sign of these areas is different then we know that the
line defining the edge and the point have a collision
somewhere in between as shown in Figure 17.
However, this condition does not guarantee that the
point actually hits the edge. This is only a necessary
condition for a collision to occur. In this case we have
to solve a quadratic equation in the time t to find the
point of collision. Subsequently we move the point and
edge to the time of collision and test whether the point
is on the edge (similarly to Bridson et al. [6]).

Figure 16: Elastic versus inelastic collision.

time

space (1D)

h

Figure 17: space-time collision of a point and an edge

in two-dimensions.

In three-dimensions two simplicial complexes’
simplices can only collide through point-triangle and
edge-edge pairs. In both cases we can construct a
tetrahedron formed by the pair as shown in Figure 18.
These tetrahedra have a signed volume in three
dimensions and similarly to the one-dimensional and
two-dimensional cases we can check the signs of these
volumes at the beginning and at the end of the time
step. Of course we also check whether there is an
actual intersection or not at the time of collision. In this
case we have to solve a cubic polynomial equation to
get the ti f n rt this is the algorithm: me o collisio . In sho
 if ଴ܸ ൈ ଵܸ ൐ 0 stop lap at ݐ

Find ݐ such that ௧ܸ ൌ 0 Check if primitives overIf yes handle collision.

If we add a thickness to each point, edge and
triangle then the situation is a little more complicated
and we have to consider the four cases listed in Figure
19. On the right we list the corresponding polynomial
we have to solve to find the time of collision. This
required us to write a routine that computes the real
roots of a polynomial of degree up to 6. This is actually
a lot trickier than it sounds, particularly due to
numerical precision issues. How we dealt with these
issues is beyond the scope of this paper.

Figure 18: Both in the point/triangle and edge/edge

case we can construct a tetrahedron.

Figure 19: four possible collision types when thickness

is added.

To handle many primitives we first use a
hierarchical bounding volume structure to rapidly cull
pairs that do not intersect. We then perform the more
expensive collision tests described above on the
remaining pairs. We have experimented with many
different bounding volume data structures and found
that a kDOP tree performed best in practice. We also
use a hash table data structure for unstructured
simplicial complexes such as a particle system. This is
because the building of the topology (not its geometry)
of the hierarchical tree can be quite costly in practice.

Many existing solvers resolve collisions
sequentially as they occur in time and move the entire
state to the time of collision. This is clearly the most
accurate way to proceed. However, it can be
computationally expensive in the case of many
collision events. Worse it can suffer from lockups. For
example, consider the case of a bouncing ball with a
restitution coefficient smaller than one. It is a well
known fact that the ball will bounce an infinite amount
of times in a finite amount of time. Therefore an event
based system would never halt in this case.

For these reasons we decided to adopt a fixed time
step approach. We resolve the collisions sequentially
but do not move the entire system to the time of
collision. The sequence stops when all collisions are
resolved or when a maximum number of iterations has
been reached. Figure 20 shows a sequence of collisions
for the case of three particles colliding in one-
dimension.

We emphasize that our approach is an
approximation. But perceptually it can be argued that it
is hard to distinguish between a correct simulation and
an approximate one in the case of many collisions. On
the other hand our approach is more stable and does
not suffer from lockup problems like event based
approaches.

Quadratic (2)

Quartic (4)

Sextic (6)

Sextic (6)

Figure 20: collision of three particles in one-dimension

using a fixed time step approach.

Figure 21: Snapshot of one of our demo programs.

8. Results

Nucleus was first released in Autodesk™ MAYA

8.5. It has been used in numerous productions by our
customers. The capabilities of Nucleus are best
demonstrated in animations and live demos. Most of
the demos were derived from early prototypes but they
use the same Nucleus library as MAYA does. Figure
21 shows a snapshot of one of our demos which runs in
real-time and tests the various collisions between point,
edges and triangles. Many demos and animations were
shown by the author during his keynote talk at the
IEEE CAD/Graphics International Conference 2009 in
Yellow Mountain City in China.

Figure 22 shows a sequence of an animation of a
Ballerina that we created with nCloth. The Ballerina is
animated using key-frames and collides with the dress.
The Ballerina’s geometry changes quite a lot from
frame to frame and our space-time approach turned out
to be crucial to resolve the collisions. Figure 23 shows
a sequence of a liquid simulation using nParticles.

My co-worker Duncan Brinsmead has a web blog
with many interesting examples and unusual
applications of Nucleus [7]. For example, he created a
simulation of a slinky using nCloth. The shear
constraint was particularly useful in this case to keep
the slinky rigid as shown in Figure 24.

Figure 22: Animated sequence of a ballerina.

Figure 23: Simulation of a liquid using nParticles.

Figure 24: Still from an animation of a slinky using

nCloth.

9. Conclusions and Future Work

In this paper we have given an overview of the new

Nucleus solver library available in our Autodesk™
MAYA software. Currently only the nCloth and
nParticle modules are exposed. However, the Nucleus
solver also handles curve-like objects and other effects
not yet exposed in Autodesk™ MAYA which were
shown in our demos. In the future we intend to add
more functionality to the solver such as true rigid
bodies, better liquids, hair and other effects.

We are also exploring other uses of the Nucleus
library outside of the field of computer graphics.
Currently we are looking at applications in architecture
[4]. We have recently obtained promising results in the
area of panelization modeling which currently is a
costly procedure.

Another very important area of future research is
how to improve the control of Nucleus. Perhaps some
controls can be built in as constraints. In fact we have
one built in already which loosely constrains the cloth
to a goal mesh animated by a user. Currently there are
a lot of parameters in Nucleus and we would like to
make the user-interface more user-friendly with more
intuitive controls.

Also we are investigating ways to make the solver
more multi-thread friendly. Some parts of the solver
are already multi-threaded but the order dependent way
in which we solve the constraints limits a global
parallelization of the Nucleus solver.

We are currently working on all of the issues.

10. References

[1] P. Alexandrov, Elementary Concepts of Topology,

Dover, New York, 1961.

[2] P. Alexandrov, Combinatorial Topology, Dover, New

York, 1998.

[3] V. I. Arnold, Mathematical Methods of Classical

Mechanics, Springer, New York, 1989.

[4] R. Attar, R. Aish, J. Stam, D. Brinsmead, A. Tessier,

M. Glueck, A. Khan, “Physics-based generative design”,
CAAD Futures Conference, Montreal, 2009.

[5] D. Baraff, “Linear-time Dynamics Using Lagrange

Multipliers”, in Proc. SIGGRAPH 96, 1996, pp. 137-146.

[6] R. Bridson, R. Fedkiw, and J. Anderson, “Robust

Treatment of Collisions, Contact and Friction for Cloth
Animation”, Transaction on Graphics (TOG), Vol. 21, No. 3,
Proc. ACM SIGGRAPH 2002, 2002, pp. 594-603.

[7] D. Brinsmead, “AREA: Duncan’s Corner”,

http://area.autodesk.com/index.php/blogs_duncan/tag_list/we
lcome/.

[8] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of

Clothing with Folds and Wrinkles”, Proc.
ACM/EUROGRAPHICS Symposium on Computer
Animation, 2003, 2003, pp. 28-36.

[9] F. Faure, “Interactive Solid Animation Using

Linearized Displacement Constraints”, In Eurographics
Workshop on Computer Animation and Simulation
(EGCAS), 1998, pp. 61-72.

[10] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier,

and E. Grinspun, “Efficient Simulation of Inextensible
Cloth”, Transactions on Graphics (TOG), Vol. 26, No. 3,
Proc. ACM SIGGRAPH 2007, 2007, pp. 49-56.

[11] E. Hairer, C. Lubich, and G. Wanner, Geometric

Numerical Integration, Springer, Berlin, 2000.

[12] T. Jakobsen, “Advanced Character Physics”, Game

Developer Conference, 2001.

[13] D. Kaufman, S. Sueda, D. James, and D. Pai,

“Staggered Projections for Frictional Contact in Multibody
Systems”, ACM Transactions on Graphics (TOG),
SIGGRAPH Asia 2008, Vol. 27, Num. 5, 2008, pp. 164-175.

[14]. J. J. Moreau, “On Unilateral Constraints, Friction

and Plasticity”, New Variational Techniques in Mathematical
Physics, 1973, pp. 172-322.

[15] M. Müller, B. Heidelberger, M. Hennix, and J.

Ratcliff, “Position Based Dynamics”, Proceedings of
VRIPhys’06, Madrid, Spain, November 6-7, 2006, pp. 71-80.

[16] X. Provot, “Deformation Constraints in a Mass-

Spring Model to Describe Rigid Cloth Behavior”, In
Graphics Interface 95, 1995, pp. 147-154.

[17] D. Stewart, “Rigid Body Dynamics with Friction and

Impact”, SIAM Rev., 42, 1, 2000, pp. 3-39.

[18] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer,

“Elastically Deformable Models”, in Proc. SIGGRAPH 87,
1987, pp. 205-214

	0B1. Introduction
	1B2. Previous and Related Work and the History of Nucleus
	2B3. Shape Model: Simplicial Complexes
	3B4. Dynamics
	11B4.1. Basic Equations
	12B4.2. On the Motion of a Simple Spring
	13B/

	4B5. Deformations as Constraints
	5B6. Unified Solver: Resolving the Battle of the Constraints
	6B7. Collisions
	7B8. Results
	8B/
	9B9. Conclusions and Future Work
	10B10. References

