
Exact Evaluation Of Catmull-Clark Subdivision Surfaces
At Arbitrary Parameter Values

Jos Stam
�

Alias wavefront, Inc.

Abstract

In this paper we disprove the belief widespread within the computer
graphics community that Catmull-Clark subdivision surfaces can-
not be evaluated directly without explicitly subdividing. We show
that the surface and all its derivatives can be evaluated in terms of
a set of eigenbasis functions which depend only on the subdivi-
sion scheme and we derive analytical expressions for these basis
functions. In particular, on the regular part of the control mesh
where Catmull-Clark surfaces are bi-cubic B-splines, the eigenba-
sis is equal to the power basis. Also, our technique is both easy
to implement and efficient. We have used our implementation to
compute high quality curvature plots of subdivision surfaces. The
cost of our evaluation scheme is comparable to that of a bi-cubic
spline. Therefore, our method allows many algorithms developed
for parametric surfaces to be applied to Catmull-Clark subdivision
surfaces. This makes subdivision surfaces an even more attractive
tool for free-form surface modeling.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, Surface, Solid, and Object
Representations J.6 [Computer Applications]: Computer-Aided
Engineering—Computer Aided Design (CAD)

Keywords: subdivision surfaces, eigenanalysis, linear algebra,
parametrizations, surface evaluation, Catmull-Clark surfaces

1 Introduction

Subdivision surfaces have emerged recently as a powerful and use-
ful technique in modeling free-form surfaces. However, although
in theory subdivision surfaces admit local parametrizations, there is
a strong belief within the computer graphics community that these
parametrizations cannot be evaluated exactly for arbitrary parame-
ter values. In this paper we disprove this belief and provide a non-
iterative technique that efficiently evaluates Catmull-Clark subdi-
vision surfaces and their derivatives up to any order. The cost of
our technique is comparable to the evaluation of a bi-cubic surface
spline. The rapid and precise evaluation of surface parametriza-
tions is crucial for many standard operations on surfaces such as
picking, rendering and texture mapping. Our evaluation technique

�

Alias wavefront, 1218 Third Ave, 8th Floor, Seattle, WA 98101, U.S.A.
jstam@aw.sgi.com

allows a large body of useful techniques from parametric surfaces
to be transfered to subdivision surfaces, making them even more
attractive as a free-form surface modeling tool.

Our evaluation is based on techniques first developed to prove
smoothness theorems for subdivision schemes [3, 5, 1, 4, 7, 6].
These proofs are constructed by transforming the subdivision into
its eigenspace1 . In its eigenspace, the subdivision is equivalent to a
simple scaling of each of its eigenvectors by their eigenvalue. These
techniques allow us to compute limit points and limit normals at
the vertices of the mesh, for example. Most of the proofs, however,
consider only a subset of the entire eigenspace and do not address
the problem of evaluating the surface everywhere. We, on the other
hand, use the entire eigenspace to derive an efficiently evaluated
analytical form of the subdivision surface everywhere, even in the
neighborhood of extraordinary vertices. In this way, we have ex-
tended a theoretical tool into a very practical one.

In this paper we present an evaluation scheme for Catmull-Clark
subdivision surfaces [2]. However, our methodology is not lim-
ited to these surfaces. Whenever subdivision on the regular part
of the mesh coincides with a known parametric representation [7],
our approach should be applicable. We have decided to present
the technique for the special case of Catmull-Clark subdivision sur-
faces in order to show a particular example fully worked out. In
fact, we have implemented a similar technique for Loop’s triangu-
lar subdivision scheme [5]. The details of that scheme are given in
a paper on the CDROM Proceedings [8]. We believe that Catmull-
Clark surfaces have many properties which make them attractive as
a free-form surface design tool. For example, after one subdivision
step each face of the initial mesh is a quadrilateral, and on the regu-
lar part of the mesh the surface is equivalent to a piecewise uniform
B-spline. Also, algorithms have been written to fair these surfaces
[4].

In order to define a parametrization, we introduce a new set of
eigenbasis functions. These functions were first introduced by War-
ren in a theoretical setting for curves [9] and used in a more general
setting by Zorin [10]. In this paper, we show that the eigenbasis
of the Catmull-Clark subdivision scheme can be computed analyt-
ically. Also, for the first time we show that in the regular case the
eigenbasis is equal to the power basis and that the eigenvectors then
correspond to the “change of basis matrix” from the power basis to
the bi-cubic B-spline basis. The eigenbasis introduced in this pa-
per can thus be thought of as a generalization of the power basis
at extraordinary vertices. Since our eigenbasis functions are an-
alytical, the evaluation of Catmull-Clark subdivision surfaces can
be expressed analytically. As shown in the results section of this
paper, we have implemented our evaluation scheme and used it in
many practical applications. In particular, we show for the first time
high resolution curvature plots of Catmull-Clark surfaces precisely
computed around the irregular parts of the mesh.

The paper is organized as follows. Section 2 is a brief review
of the Catmull-Clark subdivision scheme. In Section 3 we cast this
subdivision scheme into a mathematical setting suitable for analy-
sis. In Section 4 we compute the eigenstructure, to derive our eval-

1To be defined precisely below.

��

u

v

(0,0)

(1,1)

(0,0)

(1,1)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

��

Figure 1: A bi-cubic B-spline is defined by 16 control vertices. The
numbers on the right show the ordering of the corresponding B-
spline basis functions in the vector

�����
	���

.

��

���

Figure 2: Initial mesh and two levels of subdivision. The shaded
faces correspond to regular bi-cubic B-spline patches. The dots are
extraordinary vertices.

uation. Section 5 is a discussion of implementation issues. In Sec-
tion 6 we exhibit results created using our technique and compare
it to straightforward subdivision. Finally in Section 7 we conclude,
mentioning promising directions for future research.

1.1 Notations

In order to make the derivations below as clear and compact as pos-
sible we adopt the following notational conventions. All vectors are
assumed to be columns and are denoted by boldface lower case ro-
man characters, e.g., � . The components of the vector are denoted
by the corresponding italicized character: the � -th component of a
vector is thus denoted

���
. The component of a vector should not

be confused with an indexed vector such as ��� . Matrices are de-
noted by uppercase boldface characters, e.g., � . The transpose of
a vector � (resp. matrix �) is denoted by ��� (resp. ���). The
transpose of a vector is simply the same vector written row-wise.
Therefore the dot product between two vectors � and � is written
“ ���
� ”. The vector or matrix having only zero elements is denoted
by � . The size of this vector (matrix) should be obvious from the
context.

2 Catmull-Clark Subdivision Surfaces

The Catmull-Clark subdivision scheme was designed to general-
ize uniform B-spline knot insertion to meshes of arbitrary topology
[2]. An arbitrary mesh such as the one shown on the upper left

��

1
8

2

39

4

5

6
7

2N+3
2N+4

2N+5
2N+6

2N+2

2N+7

2N+8

2N+1

Figure 3: Surface patch near an extraordinary vertex with its con-
trol vertices. The ordering of the control vertices is shown on the
bottom. Vertex 1 is the extraordinary vertex of valence �! #" .

hand side of Figure 2 is used to define a smooth surface. The sur-
face is defined as the limit of a sequence of subdivision steps. At
each step the vertices of the mesh are updated and new vertices
are introduced. Figure 2 illustrates this process. On each vertex
of the initial mesh, the valence is the number of edges that meet
at the vertex. A vertex having a valence not equal to four is called
an extraordinary vertex. The mesh on the upper left hand side of
Figure 2 has two extraordinary vertices of valence three and one of
valence five. Away from extraordinary vertices, the Catmull-Clark
subdivision is equivalent to midpoint uniform B-spline knot inser-
tion. Therefore, the $&% vertices surrounding a face that contains no
extraordinary vertices are the control vertices of a uniform bi-cubic
B-spline patch (shown schematically Figure 1). The faces which
correspond to a regular patch are shaded in Figure 2. The figure
shows how the portion of the surface comprised of regular patches
grows with each subdivision step. In principle, the surface can thus
be evaluated whenever the holes surrounding the extraordinary ver-
tices are sufficiently small. Unfortunately, this iterative approach
is too expensive near extraordinary vertices and does not provide
exact higher derivatives.

Because the control vertex structure near an extraordinary vertex
is not a simple rectangular grid, all faces that contain extraordinary
vertices cannot be evaluated as uniform B-splines. We assume that
the initial mesh has been subdivided at least twice, isolating the ex-
traordinary vertices so that each face is a quadrilateral and contains
at most one extraordinary vertex. In the rest of the paper, we need
to demonstrate only how to evaluate a patch corresponding to a face
with just one extraordinary vertex, such as the region near vertex 1
in Figure 3. Let us denote the valence of that extraordinary vertex
by � . Our task is then to find a surface patch ' ���
	���
 defined over
the unit square (! *) + 	 $-,�./) + 	 $-, that can be evaluated directly
in terms of the 01 324�3576 vertices that influence the shape of

0 0 0

000

00

00

0

0 0 0

000

0 0 0

0 0 0

0 0 0

0 0 0

000

0 0 0

00
0

0
0

Figure 4: The effect of the seven outer control vertices does not
depend on the valence of the extraordinary vertex. When the 24� 5 $
control vertices in the center are set to zero the same limit surface
is obtained.

the patch corresponding to the face. We assume in the following
that the surface point corresponding to the extraordinary vertex is' � + 	 +
 and that the orientation of (is chosen such that ' � . '��
points outside of the surface.

A simple argument shows that the influence on the limit surface
of the seven “outer control vertices” numbered 24� 5 2 through24� 5 6 in Figure 3 can be accounted for directly. Indeed, consider
the situation depicted in Figure 4 where we show a mesh containing
a vertex of valence " and a regular mesh side by side. Let us assume
that all the control vertices are set to zero except for the seven con-
trol vertices highlighted in Figure 4. If we repeat the Catmull-Clark
subdivision rules for both meshes we actually obtain the same limit
surface, since the exceptional control vertex at the center of the
patch remains equal to zero after each subdivision step. Therefore,
the effect of the seven outer control vertices is simply each con-
trol vertex multiplied by its corresponding bi-cubic B-spline tensor
product basis function. In the derivation of our evaluation technique
we do not need to make use of this fact. However, it explains the
simplifications which occur at the end of the derivation.

3 Mathematical Setting

In this section we cast the informal description of the previous sec-
tion into a rigorous mathematical setting. We denote by� �� ��� �	�
 	������ 	
� �	� �
 	
the initial control vertices defining the surface patch shown in Fig-
ure 3. The ordering of these vertices is defined on the bottom of
Figure 3. This peculiar ordering is chosen so that later computa-
tions become more tractable. Note that the vertices do not result in
the $&% control vertices of a uniform bi-cubic B-spline patch, except
when �! �� .

Through subdivision we can generate a new set of � 0 5��
vertices shown as circles super-imposed on the initial vertices in
Figure 5. Subsets of these new vertices are the control vertices of
three uniform B-spline patches. Therefore, three-quarters of our
surface patch is parametrized, and could be evaluated as simple bi-
cubic B-splines (see top left of Figure 6). We denote this new set of
vertices by� �
 ���
��
 	������ 	
�
�� �
��������� �
 � � �
 	
�
�� ����
 	������ 	
�
�� "!$#

%�%	%�%�%	%�%�%%�%	%�%�%	%�%�%%�%	%�%�%	%�%�%%�%	%�%�%	%�%�%%�%	%�%�%	%�%�%%�%	%�%�%	%�%�%%�%	%�%�%	%�%�%%�%	%�%�%	%�%�%%�%	%�%�%	%�%�%

1

8

2

39

4

5
6

7

2N+9

2N+3
2N+42N+5

2N+6

2N+2

2N+7

2N+8

2N+1

2N+10

2N+11

2N+12

2N+15

2N+16

2N+17

2N+13 2N+14

Figure 5: Addition of new vertices by applying the Catmull-Clark
subdivision rule to the vertices in Figure 3.

With these matrices, the subdivision step is a multiplication by an0 . 0 (extended) subdivision matrix & :�
 '& � ��# (1)

Due to the peculiar ordering that we have chosen for the vertices,
the extended subdivision matrix has the following block structure:&)(+* �*
�
 *
-,/. 	 (2)

where * is the 24� 5 $. 24� 5 $ subdivision matrix usually found
in the literature [4]. The remaining two matrices correspond to the
regular midpoint knot insertion rules for B-splines. Their exact def-
inition can be found in Appendix A. The additional points needed
to evaluate the three B-spline patches are defined using a bigger
matrix

�& of size � . 0 : ��
 �& � � 	
where �& 10 * �*
�
 *
-,* ,2
 * ,�,/3 # (3)

The matrices * ,2
 and * ,�, are defined in Appendix A. The sub-
division step of Equation 1 can be repeated to create an infinite
sequence of control vertices:�54 6& �5487
 '& 4 � � �������54 �& �5487
 �&9& 487
 � � 	;:=< $ #
As noted above, for each level

:>< $, a subset of the vertices of��54
becomes the control vertices of three B-spline patches. These

P3

P2P1

1
2

3

2N+15 2N+92N+16 2N+14

1 6 2N+4 2N+12

4 5 2N+3 2N+11

2N+6 2N+22N+7 2N+10

1

4 5

6

7

2N+3

2N+4

2N+5

2N+6 2N+22N+7 2N+10

2N+11

2N+12

2N+138

2

3

2N+8

2N+17

1 6 2N+4

4 5 2N+3

2N+6 2N+22N+7

2N+152N+16 2N+14

u

v

Figure 6: Indices of the control vertices of the three bi-cubic B-
spline patches obtained from

��54
.

Ω1
1

Ω2
1Ω3

1

Ω1
2

Ω2
2Ω3

2

Ω1
3

Ω2
3Ω3

3

u

v

Figure 7: Partition of the unit square into an infinite family of tiles.

control vertices can be defined by selecting $&% control vertices from��54
and storing them in $&% .�� matrices:� � � 4 �� � ��54 	

where � � is a $&% .$� “picking” matrix and � �$ 	 2 	 � . Let
�����
	���

be the vector containing the $&% cubic B-spline basis functions (see
Appendix B). If the control vertices are ordered as shown on the left
of Figure 1, then the surface patch corresponding to each matrix of
control vertices is defined as

' � � 4 ���
	���
 � � � � 4 �����
	���
 �� �4 � � � �����
	���
�	 (4)

where
���
	���
�� (,

: < $ and � $ 	 2 	 � . Using the ordering
convention for the B-spline control vertices of Figure 1, the defini-
tion of the picking matrices is shown in Figure 6. Each row of � � is
filled with zeros except for a one in the column corresponding to the
index shown in Figure 6 (see Appendix B for more details). The in-
finite sequence of uniform B-spline patches defined by Equation 4
form our surface ' ���
	���
 , when “stitched together”. More formally,
let us partition the unit square (into an infinite set of tiles � (4 �
	 ,: < $ 	 � $ 	 2 	 � , as shown in Figure 7. Each tile with index

:
is

four times smaller than the tiles with index
:�� $. More precisely:

(
4

 $2 4 	 $

2 487
�� .�
 + 	 $2 4 � 	
(
4 ,
 $2 4 	 $

2 487
�� .�
 $2 4 	 $
2 487
�� 	 (5)

(
4�

 + 	 $2 4 � .�
 $2 4 	 $
2 487
 � #

A parametrization for ' ���
	���
 is constructed by defining its restric-
tion to each tile (

4
� to be equal to the B-spline patch defined by the

control vertices
� � � 4 :

' ���
	���
 ���� ' � � 4 ��� � � 4 ���
	���
�
 # (6)

The transformation
� � � 4 maps the tile (

4
� onto the unit square (:�
�� 4 ���
	���
 � 2

4 ��� $ 	 2 4 ��
�	 (7)� ,2� 4 ���
	���
 � 2
4 ��� $ 	 2 4 ��� $
 �����

(8)� � � 4 ���
	���
 � 2
4 �
	 2 4 ��� $
 # (9)

Equation 6 gives an actual parametrization for the surface. How-
ever, it is very costly to evaluate, since it involves

:�� $ multipli-
cations of the 0*. 0 matrix & . The evaluation can be simplified
considerably by computing the eigenstructure of & . This is the key
idea behind our new evaluation technique and is the topic of the
next section.

4 Eigenstructure, Eigenbases and Evalu-
ation

The eigenstructure of the subdivision matrix & is defined as the
set of its eigenvalues and eigenvectors. In our case the matrix &
is non-defective for any valence. Consequently, there always ex-
ists 0 linearly independent eigenvectors [4]. Therefore we denote
this eigenstructure by

��� 	��

, where

�
is the diagonal matrix con-

taining the eigenvalues of & , and
�

is an invertible matrix whose
columns are the corresponding eigenvectors. The computation of
the eigenstructure is then equivalent to the solution of the following
matrix equation: & � ��� 	

(10)

where the � -th diagonal element of
�

is an eigenvalue with a cor-
responding eigenvector equal to the � -th column of the matrix

�
(� $ 	������ 	 0). There are many numerical algorithms which
can compute solutions for such equations. Unfortunately for our
purposes, these numerical routines do not always return the cor-
rect eigenstructure. For example, in some cases the solver returns
complex eigenvalues. For this reason, we must explicitly com-
pute the eigenstructure. Since the subdivision matrix has a definite
block structure, our computation can be done in several steps. In
Appendix A we analytically compute the eigenstructure

� � 	"! �

(resp.

� # 	�$

) of the diagonal block * (resp. *
-,) of the subdi-
vision matrix defined in Equation 2. The eigenvalues of the subdivi-
sion matrix are the union of the eigenvalues of its diagonal blocks:

�)(� �� # . #
Using the eigenvectors of * and *
-, , it can be proven that the eigen-
vectors for the subdivision matrix must have the following form:

�)(! � �!
 $
=. #
The matrix

!
 is unknown and is determined from Equation 10. If
we replace the matrices

�
,
�

and & by their block representations,
we obtain the following matrix equation:*
�
 ! � 5 *
-, !
 !
 � # (11)

Since
! � is known,

!
 is computed by solving the 24� 5 $ linear
systems of Equation 11. In principle, this equation could be solved
symbolically. In practice, however, because of the small sizes of

the linear systems (� .��) we can compute the solution up to ma-
chine accuracy (see the next section for details). The inverse of our
eigenvector matrix is equal to� 7
)(! 7
� �� $ 7

 !
 ! 7
� $ 7

 . 	 (12)

where both
! � and

$
 can be inverted exactly (see Appendix A).
This fact allows us to rewrite Equation 10:& ����� 7
 #
This decomposition is the crucial result that we use in constructing a
fast evaluation scheme of the surface patch. Indeed, the subdivided
control vertices at level

:
are now equal to��54 �&9& 487
 � � �& ��� 487
 � 7
 � � �& ��� 487
��� � 	

where
�� � � 7
 � � is the projection of the 0 control vertices

into the eigenspace of the subdivision matrix. Using this new ex-
pression for the control vertices at the

:
-th level of subdivision,

Equation 4 can be rewritten in the following form:

' � � 4 ���
	���
 �� �� � 487
 � � � �& � ! � �����
	���
 #
We observe that the right most terms in this equation are indepen-
dent of the control vertices and the power

:
. Therefore, we can

precompute this expression and define the following three vectors:

� ���
	�� 	 �
 � � � �& � ! � �����
	���
 � $ 	 2 	 � # (13)

The components of these three vectors correspond to a set of 0
bi-cubic splines. In Appendix B we show how to compute these
splines. Notice that the splines � �����
	�� 	 �
 depend only on the va-
lence of the extraordinary vertex. Consequently, we can rewrite the
equation for each patch more compactly as:

' � � 4 ���
	���
 �� �� � 487
 � ���
	�� 	 �
 � $ 	 2 	 � # (14)

To make the expression for the evaluation of the surface patch more
concrete, let ���� denote the rows of

�� � . Then the surface patch can
be evaluated as:

' ���
	���
 ���� ��
� �
 �
	 �
 487
 � � ��� � � 4 ���
	���
�	 �
 � � # (15)

Therefore, in order to evaluate the surface patch, we must first com-
pute the new vertices � � (only once for a given mesh). Next, for
each evaluation we determine

:
and then scale the contribution

from each of the splines by the relevant eigenvalue to the power: � $. Since all but the first of the eigenvalues are smaller than one,
their contribution decreases as

:
increases. Thus, for large

:
, i.e.,

for surface-points near the extraordinary vertex, only a few terms
make a significant contribution. In fact for

���
	���
 � + 	 +
 the sur-
face point is �
 , which agrees with the definition of a limit point in
[4].

Alternatively, the bi-cubic spline functions � ���
	�� 	 �
 can be
used to define a set of eigenbasis functions for the subdivision. For
a given eigenvector

	 �
we define the function � � by its restrictions

on the domains (
4
� as follows:

� �����
	���
 ���� �
	 �
 487
 � ����� � � 4 ���
	���
�	 �
�	
with � $ 	������ 	 0 . By the above definition these functions satisfy
the following scaling relation:

� �����
� 2 	���� 2
 	 � � �����
	���
 #

The importance of these functions was first noted by Warren in the
context of subdivision curves [9]. More recently, Zorin has defined
and used eigenbasis functions to prove smoothness conditions for
very general classes of subdivision schemes [10]. However, ex-
plicit analytical expressions for particular eigenbases have never
appeared before. On the other hand, we can compute these bases
analytically. Figures 8 and 9 show the complete sets of eigenbasis
functions for valences 3 and 5. In the figures we have normalized
each function such that its range is bounded within

� $ and $. In
particular, the first eigenbasis corresponding to an eigenvalue of one
is always a constant function for any valence. A closer look at Fig-
ures 8 and 9 reveals that they share seven identical functions. In fact
as shown in Appendix B, the last seven eigenbasis functions for any
valence are always equal to� $� % �

�
�
�
	 $
%
�
�
	 $
%
�
�
� 	 $
2
�
�
� , 	 $

%
�
�
	 $
%
� �

�
	 $
2
� , � ��� #

Furthermore, by transforming these functions back from the
eigenspace using

$ 7

 we obtain the seven tensor B-spline basis
functions ���

���
	���
�	
���
���
	���
�	

�
-, ���
	���
�	������ 	 �

� ���
	���
�	
i.e., the basis functions corresponding to the “outer layer” of control
vertices of Figure 3. This should not come as a surprise since as we
noted above, the influence of the outer layer does not depend on the
valence of the extraordinary vertex (see Figure 4).

In the regular bi-cubic B-spline case (� �), the remaining
eigenbasis can be chosen to be equal to the power basis

��$ 	��
	�� 	�� , 	�� � 	�� , 	�� , � 	�� � , 	�� , � , 	 #
The scaling property of the power basis is obvious. For example,
the basis function

� , �
corresponds to the eigenvalue $ � 6 :

���
� 2
 , ����� 2
 � $ � 2
 , � $ � 2
 � , � $
6
� , � #

This relationship between the Catmull-Clark subdivision and the
power basis in the regular case has not been noted before. Note
also that the eigenvectors in this case correspond to the “change of
basis matrix” from the bi-cubic B-spline basis to the power basis.
The eigenbasis functions at extraordinary vertices can thus be inter-
preted as a generalization of the power basis. However, the eigen-
bases are in general not polynomials. In the case of the Catmull-
Clark subdivision they are piece-wise bi-cubic polynomials. The
evaluation of the surface patch given by Equation 15 can now be
rewritten exactly as:

' ���
	���

��
� �
 � �����
	���
 � � # (16)

This is the key result of our paper, since this equation gives a
parametrization for the surface corresponding to any face of the
control mesh, no matter what the valence is. There is no need to
subdivide. Equation 16 also allows us to compute derivatives of the
surface up to any order. Only the corresponding derivatives of the
basis functions appearing in Equation 16 are required. For example,
the partial derivative of the � -th eigenbasis with respect to

�
is:�� � � �����
	���
 � � � #2 4 �
	 �
 487
 �� � � ����� � � 4 ���
	���
�	 �
�	

where the factor 2
4

is equal to the derivative of the affine transfor-
mation

� � � 4 . Generally a factor 2�� 4 will be present when the order
of differentiation is � .

5 Implementation

Although the derivation of our evaluation technique is mathemati-
cally involved, its implementation is straightforward. The tedious
task of computing the eigenstructure of the subdivision matrix only
has to be performed once and is provided in Appendix A. In prac-
tice, we have precomputed these eigenstructures up to some maxi-
mum valence, say NMAX=500, and have stored them in a file. Any
program using our evaluation technique can read in these precom-
puted eigenstructures. In our implementation the eigenstructure for
each valence N is stored internally as

typedef
struct �
double L[K]; /* eigenvalues */
double iV[K][K]; /* inv of the eigenvectors */
double x[K][3][16]; /* coeffs of the splines */	 EIGENSTRUCT;

EIGENSTRUCT eigen[NMAX];,

where K=2*N+8. At the end of this section we describe how we
computed these eigenstructures. We emphasize that this step only
has to be performed once and that its computational cost is irrele-
vant to the efficiency of our evaluation scheme.

Given that the eigenstructures have been precomputed and read
in from a file, we evaluate a surface patch around an extraordinary
vertex in two steps. First, we project the control vertices surround-
ing the patch into the eigenspace of the subdivision matrix. Let the
control vertices be ordered as shown in Figure 3 and stored in an ar-
ray C[K]. The projected vertices Cp[K] are then easily computed
by using the precomputed inverse of the eigenvectors:

ProjectPoints(point *Cp,point *C,int N) �
for (i=0 ; i<2*N+8 ; i++) �
Cp[i] = (0,0,0);
for (j=0 ; j<2*N+8 ; j++) �
Cp[i] += eigen[N].iV[i][j] * C[j];			

This routine is called only whenever one of the patches is evaluated
for the first time or after an update of the mesh. This step is, there-
fore, called at most once per surface patch. The second step of our
evaluation, on the other hand, is called whenever the surface has to
be evaluated at a particular parameter value (u,v). The second
step is a straightforward implementation of the sum appearing in
Equation 15. The following routine computes the surface patch at
any parameter value.

EvalSurf (point P, double u, double v,
point *Cp, int N) �

/* determine in which domain (
4
� the parameter lies */

n = floor(min(-log2(u),-log2(v)));
pow2 = pow(2,n-1);
u *= pow2; v *= pow2;
if (v < 0.5) �
k=0; u=2*u-1; v=2*v;	

else if (u < 0.5) �
k=2; u=2*u; v=2*v-1;	

else �
k=1; u=2*u-1; v=2*v-1;	

/* Now evaluate the surface */
P = (0,0,0);
for (i=0 ; i<2*N+8 ; i++) �

P += pow(eigen[N].L[i],n-1) *
EvalSpline(eigen[N].x[i][k],u,v)*Cp[i];		

The function EvalSpline computes the bi-cubic polynomial
whose coefficients are given by its first argument at the parameter
value (u,v). When either one of the parameter values u or v is
zero, we set it to a sufficiently small value near the precision of the
machine, to avoid an overflow that would be caused by the log2
function. Because EvalSpline evaluates a bi-cubic polynomial,
the cost of EvalSurf is comparable to that of a bi-cubic surface
spline. The extra cost due to the logarithm and the elevation to an
integer power is minimal, because these operations are efficiently
implemented on most current hardware. Since the projection step
is only called when the mesh is updated, the cost of our evaluation
depends predominantly on EvalSurf.

The computation of the p-th derivative is entirely analogous. In-
stead of using the routine EvalSpline we employ a routine that
returns the p-th derivative of the bi-cubic polynomial. In addition,
the final result is scaled by a factor pow(2,n*p). The evaluation
of derivatives is essential in applications that require precise surface
normals and curvature. For example, Newton iteration schemes
used in ray surface computations require higher derivatives of the
surface at arbitrary parameter values.

We now describe how we compute the eigenstructure of the sub-
division matrix. This step only has to performed once for a given set
of valences. The efficiency of this step is not crucial. Accuracy is
what matters here. As shown in the appendix, the eigenstructure of
the two matrices * and *
-, can be computed analytically. The cor-
responding eigenstructure of the extended subdivision matrix & re-
quires the solution of the 24�/5 $ linear systems of Equation 11. We
did not solve these analytically because these systems are only of
size � . � . Consequently, these systems can be solved up to machine
accuracy using standard linear solvers. We used the dgesv routine
from LINPACK to perform the task. The inverse of the eigenvec-
tors is computed by carrying out the matrix products appearing in
Equation 12. Using the eigenvectors, we also precompute the coef-
ficients of the bi-cubic splines � ���
	 � 	 �
 as explained in Appendix
B. For each valence � we stored the results in the data structure
eigen[NMAX] and saved them in a file to be read in at the start
of any application which uses the routines ProjectPoints and
EvalSurf described above.

6 Results

In Figure 10 we depict several Catmull-Clark subdivision surfaces.
The extraordinary vertex whose valence � is given in the figure
is located in the center of each surface. The position informa-
tion within the blue patches surrounding the extraordinary vertex
are computed using our new evaluation technique. The remaining
patches are evaluated as bi-cubic B-splines. Next to each surface
we also depict the curvature of the surface. We map the value of
the Gaussian curvature onto a hue angle. Red corresponds to a
flat surface, while green indicates high curvature. We have pur-
posely made the curvature plot discontinuous in order to empha-
size the iso-contour lines. Both the shaded surface and the cur-
vature plot illustrate the accuracy of our method. Notice especially
how the curvature varies smoothly across the boundary between the
patches evaluated using our technique and the regular bi-cubic B-
spline patches. The curvature plots also indicate that for � � �
the Gaussian curvature takes on arbitrarily large values near the ex-
traordinary vertex. The curvature at the extraordinary vertex is in
fact infinite, which explains the diverging energy functionals in [4].

Figure 11 depicts more complex surfaces. The patches in blue
are evaluated using our technique.

7 Conclusion and Future Work

In this paper we have presented a technique to evaluate Catmull-
Clark subdivision surfaces. This is an important contribution since
the lack of such an evaluation scheme has been sited as the chief
argument against the use of subdivision scheme in free-form sur-
face modelers. Our evaluation scheme permits many algorithms
and analysis techniques developed for parametric surfaces to be
extended to Catmull-Clark surfaces. The cost of our algorithm
is comparable to the evaluation of a bi-cubic spline. The imple-
mentation of our evaluation is straightforward and we have used it
to plot the curvature near extraordinary vertices. We believe that
the same methodology can be applied to many other subdivision
schemes sharing the features of Catmull-Clark subdivision: regular
parametrization away from extraordinary vertices. We have worked
out the details for Loop’s triangular scheme, and the derivation can
be found in the accompanying paper on the CDROM proceedings
[8]. Catmull-Clark surfaces and Loop surfaces share the property
that their extended subdivision matrices are non-defective. In gen-
eral, this is not the case. For example, the extended subdivision
matrix of Doo-Sabin surfaces cannot generally be diagonalized. In
this case, however, we can use the Jordan normal form of the ex-
tended subdivision matrix and employ Zorin’s general scaling rela-
tions [10].

Acknowledgments

I wish to thank the following individuals for their help: Eugene Lee
for assisting me in fine tuning the math, Michael Lounsbery and
Gary Herron for many helpful discussions, Darrek Rosen for creat-
ing the models, Pamela Jackson for proofreading the paper, Gregg
Silagyi for his help during the submission, and Milan Novacek for
his support during all stages of this work.

A Subdivision Matrices and Their Eigen-
structures

The matrix * corresponds to the extraordinary rules around the ex-
traordinary vertex. With our choice of ordering of the control ver-
tices the matrix is:

*
����������
��� � ����� � ����� � � ����� � �	��� � �����

��
� + + ����� + + �
�� �
�
� + + ����� + + + +
 ����
��
� ����� + + + +� + + ���
� ����� + + + +

...
...

. . .
...
 � + + + + ����������
��� � + + + + ����� + + ���

�����������
where��� $ � ���� 	 � � �

24� , 	 ��� $��� , 	�
 �
6
	�� $

$&%
	 � $� #

Since the lower right 24� . 24� block of * has a cyclical structure,
we can use the discrete Fourier transform to compute the eigen-
structure of * . This was first used in the context of subdivision sur-
faces by Doo and Sabin [3]. The discrete Fourier transform can be
written compactly by introducing the following 24�3. 24� “Fourier

matrix”;

�
����������
$ + $ + ����� $ ++ $ + $ ����� + $
$ +�� 7
 + ����� � 7�� � 7
! +
+ $ + � 7
 ����� + � 7�� � 7
!

...
. . .

...

$ +"� 7�� � 7
! + ����� � 7�� � 7
! # +
+ $ +$� 7�� � 7
! ����� + � 7�� � 7
! #

�����������
	

where � &%('*) � � 2,+ � �
 . Using these notations we can write down
the “Fourier transform” of the matrix * compactly as:

�*
�����

�* � � � �
� �*
 � �
... � . . . �
� � � �* � 7

������ .- * - 7
 	
where - ($ ��
� � . 	 - 7
)($ �� � � . 	

�* � 0 ��� �
� � � ���
 2 � 2 �� 2 � � 3 �����

�*0/ (� � � 7 / 51� / ! 5
2� � $ 51� 7 / !� � $�53� / ! � . 	4 $ 	������ 	 � � $. The eigenstructure of the Fourier transform
�* is

computed from the eigenstructures of its diagonal blocks. The first
block

�* � has eigenvalues5
 $ 	 5 , 	 5 � $
6 �76 � � 5 � �98;: � � � � + � 5 "4� ,=<

and eigenvectors

�> � 10 $ $&% 5 ,, � $ 2 5 , 57$ $&% 5 ,� � $ 2 5 � 57$$ % 5 , � $ % 5 � � $$ � 5 , 57$ � 5 � 57$ 3 #
Similarly, the two eigenvalues of each block

�*0/ (4 $ 	������ 	 � � $)
are equal to:

	@?/ $
$&% 04"�5BA=CED 6 2,+ 4� < 8FA=CED 6 + 4� <HG $&6 5 2IA=CED 6 2,+ 4� < 3 	

where we have used some trigonometric relations to simplify the re-
sulting expressions. The corresponding eigenvectors of each block
are �> /)(� 	 7/ � $ � 	 �/ � $

$ 51� / $�51� / . #
We have to single out the special case when � is even and

4 � � 2 .
In this case the corresponding block is�> �KJ , ($ ++ $. #
The eigenvalues of the matrix

�* are the union of the eigenvalues of
its blocks and the eigenvectors are

�>

�����
�> � � � �
� �>
 � �
... � . . . �
� � � �> � 7

������ #

Since the subdivision matrix * and its Fourier transform
�* are simi-

lar, they have the same eigenvalues. The eigenvectors are computed
by inverse Fourier transforming these eigenvectors:> .- 7
 �> #
Consequently, we have computed the eigenvalues and eigenvectors
of * . However, in this form the eigenvectors are complex valued
and most of the eigenvalues are actually of multiplicity two, since	 7/ 	 �� 7 / and

	 �/ 	 7� 7 / . We relabel these eigenvalues as
follows: 5 � 	 7
 	 5�� 	 �
 	 5 � 	 7, 	 5�� 	 �, 	������
Since we have rearranged the eigenvalues, we have to rearrange the
eigenvectors. At the same time we make these eigenvectors real.
Let

�
 	������ 	�� , � ��
 be the columns of
>

, then we can construct the
columns of a matrix

! � as follows:

�
 �
 	 � , � , 	 � � � � 	
� , / � , $

2
��� / � � 5 � , � 7 / � ,
 �����

� , / � � $
2 �
��� / � � ��� , � 7 / � ,
 #

More precisely �
 , � , , � � , � , / � , and � , / � � are equal to�������
$$$
...$$

�������� 	
�������
$&% 5 ,, � $ 2 5 , 57$% 5 , � $� 5 , 57$

...% 5 , � $� 5 , 57$
�������� 	
�������
$&% 5 ,� � $ 2 5 � 5/$% 5 � � $� 5 � 5/$

...% 5 � � $� 5 � 5/$
�������� 	����������

+� 5 / � � � $$�5�� /� � 5 / � � � $
 � /� / 5�� , /...� � 5 / � � � $
 � � � 7
! /� � � 7
! / 57$

�����������
�����

����������
++	 /� � 5 / � � � $
 	 /	 / 5 	 , /...� � 5 / � � � $
 	 � � 7
! /	 � � 7
! /

�����������
	

respectively, where
4 !$ 	������ 	 � , , � , � � $ when � is odd

and � , � � 2 when � is even, and

� � &A=CED 6 2,+ �� < ����� 	 � &D�
 � 6 2,+ �� < #
When � is even the last two eigenvectors are

� � , � � + 	 $ 	 + 	 � $ 	 + 	 $ 	 + 	������ 	 � $ 	 +
 �����
� � , � ��
 � + 	 + 	 $ 	 + 	 � $ 	 + 	 $ 	������ 	 + 	 � $
 #

Finally, the diagonal matrix of eigenvalues is� �
 �
� � $ 	 5 , 	 5 � 	 5 � 	 5 � 	������ 	 5K� � , 	 5K� � ,
 #
The inverse of the eigenvectors

! � can be computed likewise by
first computing the inverses of each block

�> / in the Fourier domain
and then setting > 7
 �> 7
 - #
With the same reshuffling as above we can then compute

! 7
� . The
resulting expressions are, however, rather ugly and are not repro-
duced in this paper.

The remaining blocks of the subdivision matrix & directly fol-
low from the usual B-spline knot-insertion rules.

*
-,
�������
� � � + � � ++ � � + + + ++ � � � + + ++ + � � + + ++ + + + � � ++ + + + � � �+ + + + + � �

�������� 	 *
�

�������
� + + � � �

+ + �� + + �
1
 + + ��
+ + � � � � � �� + + + +
3
F� �� + +
3
 � + + �� � � � � � + + �� �H
3
 + + + + �

�������� 	
where � �

$&%
	
�
 ���2 ����� � $

%�� #
For the case �! �� , there is no control vertex

� �
(
� � � ,) and the

second column of the matrix *
�
 is equal to
� + 	 + 	 � 	���	 + 	 � 	��4
 � .

The eigenstructure of the matrix *
-, can be computed manually,
since this matrix has a simple form. Its eigenvalues are:# �
 �
� 6 $%�� 	 $6 	 $$&% 	 $��2 	 $6 	 $$&% 	 $��2 < 	
with corresponding eigenvectors:

$

�������
$ $ 2 $ $ $ 2 $ $+ $ $ 2 + + ++ $ + � $ + + ++ $ � $ 2 + + ++ + + + $ $ 2+ + + + $ + � $+ + + + $ � $ 2

�������� #
The inverse

$ 7

 of this matrix is easily computed manually.
The other two matrices appearing in

�& are:

* ,2

�����������
+ + + + � + + �+ + + +
.� + �+ + + + � � + �+ + + + �F
.� �+ + + +/+ � � �+ + + �F
 + + �+ + + � � + + �+ + �
.� + + �+ + � � + + + �

������������
	 * ,�,

�����������

� � + + � + +�F
.� + � + ++ � � +/+ + ++ �F
;� + + ++ + � � + + +� � + +
.� ++ + + + � � ++ + + + �F
.�+ + + +/+ � �

������������ #
B Eigenbasis Functions

In this appendix we compute the bi-cubic spline pieces � ���
	�� 	 �
 of
the eigenbasis defined in Equation 13. The vector

�����
	���

contains

the $&% tensor B-spline basis functions (�� $ 	������ 	 $&%):�
�����
	���
 � � � 7
! �� � ���
 � � � 7
! J � ����
�	

where “ � ” and “
�
” stand for the remainder and the division respec-

tively. The functions � ������
 are the uniform B-spline basis func-
tions:

% � � ����
 $ � � � 5 � � , ���
�
	

% �
 ����
 6� � % � , 5 � � � 	
% � , ����
 $ 5 � � 5 � � , � � � � �����
% �

� ����
 �
� #

The projection matrices �
 , � , and � �
are defined by introducing

the following three permutation vectors (see Figure 6):

�
 � 6 	 � 	 24� 5 " 	 24� 57$ � 	 $ 	 % 	 24� 5 � 	 24� 57$ 2 	

� 	 " 	 24� 5 � 	 24� 57$ $ 	 24� 5 � 	 24� 5 % 	 24� 5 2 	
24� 5/$&+
�	

� , � $ 	 % 	 24� 5/� 	 24� 57$ 2 	 � 	 " 	 24� 5 � 	 24� 57$ $ 	
24� 5 � 	 24� 5 % 	 24� 5 2 	 24� 57$&+ 	 24� 57$&% 	
24� 5/$ " 	 24� 57$�� 	 24� 5 �
�	

�
�

 � 2 	 $ 	 % 	 24� 5 � 	 � 	 � 	 " 	 24� 5 � 	 24� 5 6 	 24� 5 � 	
24� 5 % 	 24� 5 2 	 24� 57$ � 	 24� 57$&% 	 24� 57$ " 	
24� 5/$��
 #

Since for the case �3 �� the vertices
� , and

� �
are the same vertex,�

 2 instead of 6 for � � . Using these permutation vectors

we can compute each bi-cubic spline as follows:

� �����
	�� 	 �

��
� �
 ��� �� � � � � ���
	���
�	

where � $ 	������ 	 0 and
�

are the eigenvectors of the subdivision
matrix.

References

[1] A. A. Ball and J. T. Storry. Conditions For Tangent Plane
Continuity Over Recursively Defined B-spline Surfaces. ACM
Transactions on Graphics, 7(2):83–102, April 1988.

[2] E. Catmull and J. Clark. Recursively Generated B-Spline Sur-
faces On Arbitrary Topological Meshes. Computer Aided De-
sign, 10(6):350–355, 1978.

[3] D. Doo and M. A. Sabin. Behaviour Of Recursive Subdivision
Surfaces Near Extraordinary Points. Computer Aided Design,
10(6):356–360, 1978.

[4] M. Halstead, M. Kass, and T. DeRose. Efficient, Fair Interpo-
lation Using Catmull-Clark Surfaces. In Proceedings of SIG-
GRAPH ’93, pages 35–44. Addison-Wesley Publishing Com-
pany, August 1993.

[5] C. T. Loop. Smooth Subdivision Surfaces Based on Triangles.
M.S. Thesis, Department of Mathematics, University of Utah,
August 1987.

[6] J. Peters and U. Reif. Analysis Of Generalized B-Splines Sub-
division Algorithms. To appear in SIAM Journal of Numerical
Analysis.

[7] U. Reif. A Unified Approach To Subdivision Algorithms Near
Extraordinary Vertices. Computer Aided Geometric Design,
12:153–174, 1995.

[8] J. Stam. Evaluation Of Loop Subdivision Surfaces. SIG-
GRAPH’98 CDROM Proceedings, 1998.

[9] J. Warren. Subdivision Methods For Geometric Design.
Unpublished manuscript. Preprint available on the web at
http://www.cs.rice.edu/˜jwarren/papers/book.ps.gz.

[10] D. N. Zorin. Subdivision and Multiresolution Surface Repre-
sentations. PhD thesis, Caltech, Pasadena, California, 1997.

Figure 8: The complete set of $�� eigenbasis functions for extraor-
dinary vertices of valence �3 �� .

Figure 9: The complete set of $&6 eigenbasis functions for extraor-
dinary vertices of valence �3 #" .

N=3 N=5

N=8 N=30

Figure 10: Surfaces having an extraordinary vertex in the center.
For each surface we depict the patches evaluated using our tech-
nique in blue. Next to them is a curvature plot. Derivative informa-
tion for curvature is also computed near the center vertex using our
technique.

Figure 11: More complex surfaces rendered using our evaluation
technique (in blue).

